Python:在熊猫数据框上使用多处理

我想在大数据集上使用multiprocessing来查找两个gps点之间的距离。 我构建了一个测试集,但是我一直无法获得multiprocessing来处理这个集合。

import pandas as pd
from geopy.distance import vincenty
from itertools import combinations
import multiprocessing as mp

df = pd.DataFrame({'ser_no': [1, 2, 3, 4, 5, 6, 7, 8, 9, 0],
                'co_nm': ['aa', 'aa', 'aa', 'bb', 'bb', 'bb', 'bb', 'cc', 'cc', 'cc'],
                'lat': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                'lon': [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]})



def calc_dist(x):
    return pd.DataFrame(
               [ [grp,
                  df.loc[c[0]].ser_no,
                  df.loc[c[1]].ser_no,
                  vincenty(df.loc[c[0], x], 
                           df.loc[c[1], x])
                 ]
                 for grp,lst in df.groupby('co_nm').groups.items()
                 for c in combinations(lst, 2)
               ],
               columns=['co_nm','machineA','machineB','distance'])

if __name__ == '__main__':
    pool = mp.Pool(processes = (mp.cpu_count() - 1))
    pool.map(calc_dist, ['lat','lon'])
    pool.close()
    pool.join()

在发生此错误时,我在Windows7 Professional上使用Python 2.7.11和Ipython 4.1.2以及Anaconda 2.5.0 64位。

runfile('C:/.../ Desktop / multiprocessing test.py',wdir ='C:/.../ Desktop')Traceback(最近一次调用最后一次):

文件“”,第1行,在runfile中('C:/.../ Desktop / multiprocessing test.py',wdir ='C:/.../ Desktop')

文件“C:... Local Continuum Anaconda2 lib site-packages spyderlib widgets externalshell sitecustomize.py”,第699行,在runfile execfile(filename,namespace)

文件“C:... Local Continuum Anaconda2 lib site-packages spyderlib widgets externalshell sitecustomize.py”,第74行,在execfile exec(compile(scripttext,filename,'e​​xec'),glob ,loc)

在pool.map(calc_dist,['lat','lon'])中的文件“C:/..../ multiprocessing test.py”,第33行

在map中返回文件“C:... AppData Local Continuum Anaconda2 lib multiprocessing pool.py”,第251行返回self.map_async(func,iterable,chunksize).get()

文件“C:... Local Continuum Anaconda2 lib multiprocessing pool.py”,第567行,在get raise self._value

TypeError:无法从1创建Point实例。

def get(self, timeout=None):
    self.wait(timeout)
    if not self._ready:
        raise TimeoutError
    if self._success:
        return self._value
    else:
        raise self._value

怎么了

代码中的这一行:

pool.map(calc_dist, ['lat','lon'])

产生2个进程 - 一个运行calc_dist('lat') ,另一个运行calc_dist('lon') 。 比较文档中的第一个示例。 (基本上, pool.map(f, [1,2,3])使用列表中给出的参数调用f三次: f(1)f(2)f(3) 。)如果I' m没有错,你的函数calc_dist只能被称为calc_dist('lat', 'lon') 。 而且它不允许并行处理。

我相信你希望在进程之间分离工作,可能会将每个元组(grp, lst)发送到一个单独的进程。 下面的代码完全一样。

首先,让我们准备分裂:

grp_lst_args = list(df.groupby('co_nm').groups.items())

print(grp_lst_args)
[('aa', [0, 1, 2]), ('cc', [7, 8, 9]), ('bb', [3, 4, 5, 6])]

我们将把这些元组中的每一个(这里有三个)作为参数发送给一个独立进程中的函数。 我们需要重写函数,我们称之为calc_dist2 。 为方便起见,它的参数是一个元组,如calc_dist2(('aa',[0,1,2]))

def calc_dist2(arg):
    grp, lst = arg
    return pd.DataFrame(
               [ [grp,
                  df.loc[c[0]].ser_no,
                  df.loc[c[1]].ser_no,
                  vincenty(df.loc[c[0], ['lat','lon']], 
                           df.loc[c[1], ['lat','lon']])
                 ]
                 for c in combinations(lst, 2)
               ],
               columns=['co_nm','machineA','machineB','distance'])

现在是多处理:

pool = mp.Pool(processes = (mp.cpu_count() - 1))
results = pool.map(calc_dist2, grp_lst_args)
pool.close()
pool.join()

results_df = pd.concat(results)

results是调用的结果(此数据帧)的列表calc_dist2((grp,lst))(grp,lst)grp_lst_argsresults元素稍后连接到一个数据框。

print(results_df)
  co_nm  machineA  machineB          distance
0    aa         1         2  156.876149391 km
1    aa         1         3  313.705445447 km
2    aa         2         3  156.829329105 km
0    cc         8         9  156.060165391 km
1    cc         8         0  311.910998169 km
2    cc         9         0  155.851498134 km
0    bb         4         5  156.665641837 km
1    bb         4         6  313.214333025 km
2    bb         4         7  469.622535339 km
3    bb         5         6  156.548897414 km
4    bb         5         7  312.957597466 km
5    bb         6         7   156.40899677 km

顺便说一句,在Python 3中,我们可以使用with建设:

with mp.Pool() as pool:
    results = pool.map(calc_dist2, grp_lst_args)

更新

我只在linux上测试过这个代码。 在linux上,只读数据帧df可以df进程访问,并且不会被复制到它们的内存空间,但我不确定它是如何在Windows上正常工作的。 您可以考虑将df分成块(按co_nm分组),并将这些块作为参数发送给某些其他版本的calc_dist


奇怪。 它似乎在python2下工作,但不是python3。

这是打印输出的最小修改版本:

import pandas as pd
from geopy.distance import vincenty
from itertools import combinations
import multiprocessing as mp

df = pd.DataFrame({'ser_no': [1, 2, 3, 4, 5, 6, 7, 8, 9, 0],
                'co_nm': ['aa', 'aa', 'aa', 'bb', 'bb', 'bb', 'bb', 'cc', 'cc', 'cc'],
                'lat': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
                'lon': [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]})



def calc_dist(x):
    ret =  pd.DataFrame(
               [ [grp,
                  df.loc[c[0]].ser_no,
                  df.loc[c[1]].ser_no,
                  vincenty(df.loc[c[0], x],
                           df.loc[c[1], x])
                 ]
                 for grp,lst in df.groupby('co_nm').groups.items()
                 for c in combinations(lst, 2)
               ],
               columns=['co_nm','machineA','machineB','distance'])
    print(ret)
    return ret

if __name__ == '__main__':
    pool = mp.Pool(processes = (mp.cpu_count() - 1))
    pool.map(calc_dist, ['lat','lon'])
    pool.close()
    pool.join()

这是python2的输出

0     aa         1         2  110.723608682 km
1     aa         1         3  221.460709525 km
2     aa         2         3  110.737100843 km
3     cc         8         9  110.827576495 km
4     cc         8         0  221.671650552 km
   co_nm  machineA  machineB          distance
5     cc         9         0  110.844074057 km
0     aa         1         2  110.575064814 km
1     aa         1         3  221.151481337 km
6     bb         4         5  110.765515243 km
2     aa         2         3  110.576416524 km
7     bb         4         6    221.5459187 km
3     cc         8         9  110.598565514 km
4     cc         8         0  221.203121352 km
8     bb         4         7  332.341640771 km
5     cc         9         0  110.604555838 km
6     bb         4         5   110.58113908 km
9     bb         5         6  110.780403457 km
7     bb         4         6  221.165643396 km
10    bb         5         7  221.576125528 km
8     bb         4         7  331.754177186 km
9     bb         5         6  110.584504316 km
10    bb         5         7  221.173038106 km
11    bb         6         7  110.795722071 km
11    bb         6         7   110.58853379 km

这是从python3的堆栈跟踪

"""
Traceback (most recent call last):
  File "/usr/local/lib/python3.4/dist-packages/geopy/point.py", line 123, in __new__
    seq = iter(arg)
TypeError: 'numpy.int64' object is not iterable

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "/usr/lib/python3.4/multiprocessing/pool.py", line 119, in worker
    result = (True, func(*args, **kwds))
  File "/usr/lib/python3.4/multiprocessing/pool.py", line 44, in mapstar
    return list(map(*args))
  File "gps.py", line 29, in calc_dist
    for grp, lst in df.groupby('co_nm').groups.items()
  File "gps.py", line 30, in <listcomp>
    for c in combinations(lst, 2)
  File "/usr/local/lib/python3.4/dist-packages/geopy/distance.py", line 322, in __init__
    super(vincenty, self).__init__(*args, **kwargs)
  File "/usr/local/lib/python3.4/dist-packages/geopy/distance.py", line 115, in __init__
    kilometers += self.measure(a, b)
  File "/usr/local/lib/python3.4/dist-packages/geopy/distance.py", line 342, in measure
    a, b = Point(a), Point(b)
  File "/usr/local/lib/python3.4/dist-packages/geopy/point.py", line 126, in __new__
    "Failed to create Point instance from %r." % (arg,)
TypeError: Failed to create Point instance from 8.
"""

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
  File "gps.py", line 38, in <module>
    pool.map(calc_dist, ['lat', 'lon'])
  File "/usr/lib/python3.4/multiprocessing/pool.py", line 260, in map
    return self._map_async(func, iterable, mapstar, chunksize).get()
  File "/usr/lib/python3.4/multiprocessing/pool.py", line 599, in get
    raise self._value
TypeError: Failed to create Point instance from 8.

我知道这不是答案,但也许它有帮助...

链接地址: http://www.djcxy.com/p/9419.html

上一篇: Python: using multiprocessing on a pandas dataframe

下一篇: Download files from url parallely in python