I've read the following threads and they've helped a little, but I'm looking for a little more info. How to write AES/CBC/PKCS5Padding encryption and decryption with Initialization Vector Parameter for BlackBerry Java 256bit AES Encryption Basically, what I am doing is writing a program that will encrypt a request to be sent over TCP/IP, and then decrypted by a server program.
我已阅读以下主题,他们已经帮助了一些,但我正在寻找更多信息。 如何使用BlackBerry的初始化向量参数编写AES / CBC / PKCS5Padding加密和解密 Java 256位AES加密 基本上,我正在做的是编写一个程序来加密要通过TCP / IP发送的请求,然后通过服务器程序进行解密。 加密将需要AES,并做了一些研究,我发现我需要使用CBC和PKCS5Padding。 所以基本上我需要一个密钥和一个IV。 我正在开发的应用程序是用于手机的,所以我
I need to implement 256 bit AES encryption, but all the examples I have found online use a "KeyGenerator" to generate a 256 bit key, but I would like to use my own passkey. How can I create my own key? I have tried padding it out to 256 bits, but then I get an error saying that the key is too long. I do have the unlimited jurisdiction patch installed, so thats not the problem :) Ie
我需要实现256位AES加密,但我在网上找到的所有示例都使用“KeyGenerator”生成256位密钥,但我想使用自己的密钥。 我如何创建自己的密钥? 我试过把它填充到256位,但后来我得到一个错误,说密钥太长。 我确实已经安装了无限的权限修补程序,所以这不是问题:) IE浏览器。 KeyGenerator看起来像这样... // Get the KeyGenerator KeyGenerator kgen = KeyGenerator.getInstance("AES"); kgen.init(128); // 192 and 256 bits
The problem is that the session scoped beans are not destroyed before the session-timeout is reached. Therefore I have two questions regarding the following logout procedure: Is this the right way to use shiro logout (see logout() below) What would be the proper way to destroy the CDI session-scoped beans during logout. page.xhtml: <p:commandLink ajax="false" actionListener="#{myOther
问题是会话作用域bean在达到会话超时之前不会被销毁。 因此,我有两个有关以下注销程序的问题: 这是使用shiro注销的正确方法(请参阅下面的注销()) 在注销期间销毁CDI会话范围的bean的正确方法是什么? page.xhtml: <p:commandLink ajax="false" actionListener="#{myOtherBean.logout}" /> 豆: @Named @SessionScoped public class mySessionBean implements Serializable { } @Named @SessionScoped p
I'm creating a basic web application where user can register and then login. Obviously there is registration, login and login error page. I'm using GlassFish server for authentication. I would like to know that is there any possible way to create a new user from Java class or Servlet so that when user is created, it will be saved to 'file' Realm of GlassFish? To be more speci
我正在创建一个基本的Web应用程序,用户可以注册并登录。 显然有注册,登录和登录错误页面。 我正在使用GlassFish服务器进行身份验证。 我想知道是否有任何可能的方式从Java类或Servlet创建新用户,以便在创建用户时将其保存到GlassFish的'file'领域? 更具体的是我想要做的事情: 通过使用已定义的实体类创建用户。 将该用户实体保存到数据库。 使用用户名和密码为GlassFish文件Realm创建新用户。 到目前
I'm currently in the process of changing the password handling in a web application from unsalted MD5 to bcrypt. It's a standard JSF application, running on Glassfish 3.0.1. Using jBCrypt made creating and storing the hashes pretty easy. But now I don't know how to use bcrypt in the actual authentication when the user logs in. Since it's JSF, the login is being triggered using
我目前正在将Web应用程序中的密码处理从未加密的MD5更改为bcrypt。 这是一个标准的JSF应用程序,运行在Glassfish 3.0.1上。 使用jBCrypt使创建和存储哈希变得非常简单。 但是现在我不知道如何在用户登录时在实际身份验证中使用bcrypt。由于是JSF,因此使用HttpServletRequest#登录方法触发登录,其余部分由Java EE堆栈和Glassfish进行处理。 只需将安全领域摘要算法设置为“none”,然后在传递密码之前对密码进行哈希处理,
I recently read this article from Neil Griffin Making Distinctions Between Different Kinds of JSF Managed-Beans and it got me thinking about the distinction between different beans in my own application. To quickly summarise the gist: Model Managed-Bean: This type of managed-bean participates in the "Model" concern of the MVC design pattern. When you see the word "model" -
我最近阅读了Neil Griffin的这篇文章,对不同类型的JSF Managed-Beans进行了区分,并让我思考了我自己的应用程序中不同bean之间的区别。 要快速总结这个要点: Model Managed-Bean:这种类型的托管bean参与了MVC设计模式的“Model”关注。 当你看到“模型”这个词 - 想想DATA。 JSF模型bean应该是一个遵循JavaBean设计模式的POJO,使用getter / setter封装属性。 备份Managed-Bean:这种类型的托管bean参与了MVC设计模式的“Vi
I want to benchmark the best 2 or 3 libraries to compute a truncated singular value decomposition (SVD), ie an SVD where only the k largest singular values are kept. Moreover, I have those constraints : It has to be a java library My matrices are sparse (around 1% non zero values) My matrices are quite big (typically 10k x 5k) My matrices can also be larger than high (5k x 10k) I'v
我想基准最好的2或3个库来计算截断奇异值分解(SVD),即只保留k个最大奇异值的SVD。 而且,我有这些限制: 它必须是一个Java库 我的矩阵很稀疏(大约1%的非零值) 我的矩阵非常大(通常为10k x 5k) 我的矩阵也可以大于高(5k x 10k) 我遇到了相当多的库,但是例如在Colt中,我甚至不知道SVD算法是否考虑到我的矩阵很稀疏的事实。 另外,我没有找到能够直接计算截断解决方案的单个库(这应该快得多)。 实际上,
I am looking for a linear algebra library in Java which can handle large "sparse" matrices of size (say 1 million by 1 million) and perform decompositions like SVD,LU on the matrices. I looked around and tried COLT, however it can only handle matrices upto a fixed number of elements. EJML site also mentions that it won't be able to handle this. (http://code.google.com/p/efficie
我正在寻找一个Java中的线性代数库,它可以处理规模较大的“稀疏”矩阵(比如说100万),并在矩阵上执行SVD,LU等分解。 我环顾四周,尝试了COLT,但它只能处理矩阵达到固定数量的元素。 EJML网站也提到它将无法处理这个问题。 (http://code.google.com/p/efficient-java-matrix-library/wiki/FAQ) 我知道在C ++中有可以处理这种大小的数据的软件包,但是我不能从Java移动,因为我拥有围绕Java构建的所有其他代码。
I'm trying to compress a given image using Singular Value Decomposition. I thought I had it, until I noticed that I keep getting garbage colored pixels appearing throughout the process. The number shown at the top right shows the number of iterations where 0 is the original image. Is this a common error? Is there something I'm missing? I figure it may have to do with my math, itse
我试图使用奇异值分解压缩给定的图像。 我想我已经拥有了它,直到我注意到我在整个过程中不断出现垃圾颜色的像素。 右上角显示的数字显示了0是原始图像的迭代次数。 这是一个常见的错误? 有什么我失踪? 我认为这可能与我的数学本身有关。 我正在使用JAMA,这是一个为我处理这个问题的java矩阵包。 以下是我对每个迭代的实现: for (int i = 0; i < k; i++) { Matrix step = (uColumns[i].times(sValues[i
I have been working on latent semantic analysis lately. I have implemented it in java by making use of the Jama package. Here is the code: Matrix vtranspose ; a = new Matrix(termdoc); termdoc = a.getArray(); a = a.transpose() ; SingularValueDecomposition sv =new SingularValueDecomposition(a) ; u = sv.getU(); v = sv.getV(); s = sv.getS(); vtranspose =
最近我一直在研究潜在的语义分析。 我通过使用Jama软件包在java中实现了它。 代码如下: Matrix vtranspose ; a = new Matrix(termdoc); termdoc = a.getArray(); a = a.transpose() ; SingularValueDecomposition sv =new SingularValueDecomposition(a) ; u = sv.getU(); v = sv.getV(); s = sv.getS(); vtranspose = v.transpose() ; // we obtain this as a result of svd