如何将Android DEX(VM字节码)文件反编译成相应的Java源代码? It's easy Get these tools: 1) dex2jar to translate dex files to jar files 2) jd-gui to view the java files in the jar The source code is quite readable as dex2jar makes some optimizations. Procedure: And here's the procedure on how to decompile: Step 1: Convert classes.dex in test_apk-debug.apk to test_apk-debug_d
如何将Android DEX(VM字节码)文件反编译成相应的Java源代码? 这很容易 获取这些工具: 1)dex2jar将dex文件转换为jar文件 2)jd-gui查看jar中的java文件 源代码非常易读,因为dex2jar进行了一些优化。 程序: 这里是关于如何反编译的过程: 步骤1: 将test_apk-debug.apk中的classes.dex转换为test_apk-debug_dex2jar.jar d2j-dex2jar.sh -f -o output_jar.jar apk_to_decompile.apk 注意:在Windows机器中
The canonical JVM implementation from Sun applies some pretty sophisticated optimization to bytecode to obtain near-native execution speeds after the code has been run a few times. The question is, why isn't this compiled code cached to disk for use during subsequent uses of the same function/class? As it stands, every time a program is executed, the JIT compiler kicks in afresh, rather t
来自Sun的规范JVM实现将一些非常复杂的优化应用于字节码,以在代码运行几次后获得接近原生的执行速度。 问题是,为什么这个编译后的代码不会被缓存到磁盘中以供后续使用相同的函数/类时使用? 就目前而言,每次执行程序时,JIT编译器都会重新启动,而不是使用预编译版本的代码。 当字节码基本上被解释时,不会添加这个功能会大大增加程序的初始运行时间? 不要诉诸@MYYN发布的链接,我怀疑这是因为JVM执行的优化不是静态
This question already has an answer here: How do I write a correct micro-benchmark in Java? 11 answers Rerun your test with more than ten iterations, but also run more iterations of those iterations, say 10000 in the inner loop and ten in the outer and average the results. They should be close. The reason that there is variance is a result of the operating system and multi threading. The
这个问题在这里已经有了答案: 我如何在Java中编写正确的微基准测试? 11个答案 用十次以上的迭代重新运行测试,但也会运行更多迭代,比如在内部循环中使用10000,在结果中使用10次。 他们应该接近。 有差异的原因是操作系统和多线程的结果。 操作系统正在管理除你的程序以外的许多任务,这些任务可能比你的程序的优先级稍高。 这会导致执行过程中视线延迟。 拥有更大的样本量可以减少结果的差异。
This question already has an answer here: How do I write a correct micro-benchmark in Java? 11 answers Using jmh, I get the following results (size is the length of the array). The score is the runtime per call, in micro seconds (smaller = better). Benchmark (size) Mode Cnt Score Error Units SO34929316.parallelSetAll 1 avgt 20 0.077 ±
这个问题在这里已经有了答案: 我如何在Java中编写正确的微基准测试? 11个答案 使用jmh,我得到以下结果(大小是数组的长度)。 得分是每次通话的运行时间,以微秒为单位(越小越好)。 Benchmark (size) Mode Cnt Score Error Units SO34929316.parallelSetAll 1 avgt 20 0.077 ± 0.003 us/op SO34929316.parallelSetAll 1000 avgt 20 9.935
This question already has an answer here: How do I write a correct micro-benchmark in Java? 11 answers I would take a look at the differences in processor. Server systems are most of the time optimized for writing stuff to disk, not in doing calculations. Looking at the processor speeds alone, they are completely different 3.4 GHz vs 1.6 GHz based on that information only I would say the 3
这个问题在这里已经有了答案: 我如何在Java中编写正确的微基准测试? 11个答案 我会看看处理器的差异。 服务器系统大部分时间都是为写入磁盘而不是计算而优化的。 单看处理器的速度,根据这些信息,它们完全不同于3.4 GHz和1.6 GHz,我只能说3.4应该比1.6 GHz快得多。 为了确保在两个系统上找到一些基准信息。 当然,由于服务器处理器速度要慢得多,对我来说,这似乎是非常好的结果,根据我的计算(对于此测试),XE
This question already has an answer here: How do I write a correct micro-benchmark in Java? 11 answers I think your code having issue with count() method. As parallelStream will try to perform task concurrently. This method should be synchronized or you can make totaleven as Atomtic Integer. Hope it helps. Instead of using the forEach to increment a counter you can use the terminal oper
这个问题在这里已经有了答案: 我如何在Java中编写正确的微基准测试? 11个答案 我认为你的代码有count()方法的问题。 由于parallelStream将尝试同时执行任务。 此方法应该是synchronized ,也可以使totaleven为Atomtic整数。 希望能帮助到你。 您可以使用终端操作Stream:count来代替使用forEach来增加计数器 例如 totaleven = randomList.stream().filter(e -> e % 2 ==0).count(); totaleven = 0; totaleven =
This question already has an answer here: How do I write a correct micro-benchmark in Java? 11 answers First of all, your encrypt and decrypt methods are obviously not correct for any serious security. The encryption method also seems to contain the generation of a random BigInteger. Normally you would only do this when generating a key pair (and then you would generate a prime, not any r
这个问题在这里已经有了答案: 我如何在Java中编写正确的微基准测试? 11个答案 首先,你的加密和解密方法显然不适用于任何严重的安全问题。 加密方法似乎也包含随机BigInteger的生成。 通常情况下,只有在生成密钥对时才会这样做(然后至少对于RSA算法,您将生成一个素数,而不是任何随机整数)。 那么这是什么样的加密/解密方法超出了我的想象。 此外,Java VM需要很长时间才能优化。 所以基本上你最好使用大量的
This question already has an answer here: How do I write a correct micro-benchmark in Java? 11 answers Difference in lambda performances? 3 answers First of all, let's look at the scale of things. You're talking about a difference of about 1505 ms for 100000000 items, or about 15 nanoseconds per item. That overhead is not very substantial. That said, the overhead is from autob
这个问题在这里已经有了答案: 我如何在Java中编写正确的微基准测试? 11个答案 拉姆达表演的区别? 3个答案 首先,让我们看看事物的规模。 你谈论的是100000000个物品差异大约1505毫秒,或者说每个物品大约15纳秒。 这种开销不大。 也就是说,为了Predicate<Integer>的缘故,开销是将所有这些int自动装箱到Integers中。 Predicate::test需要一个Integer ,所以p.test(i)真正被编译为p.test(Integer.valueOf(
This question already has an answer here: How do I write a correct micro-benchmark in Java? 11 answers You are focusing too much on the unimportant detail of the precision. If you want to measure/profile the execution of certain operations, you have to make sure that these operation run long enough to make the measurement unaffected by one-time artifacts, small differences in thread schedul
这个问题在这里已经有了答案: 我如何在Java中编写正确的微基准测试? 11个答案 你过分关注精度的不重要的细节。 如果您想测量/分析某些操作的执行情况,则必须确保这些操作运行足够长时间,以使测量不受一次性工件,线程调度时序,垃圾回收或热点优化中的微小差异的影响。 在大多数情况下,如果差异小于毫秒级别,那么从它们得出结论是没有用的。 更重要的方面是这些工具是否为您的任务而设计。 System.currentTimeMi
This question already has an answer here: How do I write a correct micro-benchmark in Java? 11 answers Rebuild your C version with any optimization level other than -O0 (eg -O2 ) and you will find it runs in 0 seconds. So the Java version takes 1.6 seconds to do nothing, and the C version takes 0.0 seconds (really, around 0.00005 seconds) to do nothing. Java is more aggressive at eliminat
这个问题在这里已经有了答案: 我如何在Java中编写正确的微基准测试? 11个答案 使用除-O0之外的任何优化级别(例如-O2 )重建您的C版本,并且您会发现它在0秒内运行。 所以Java版本需要1.6秒才能做任何事情,而C版本则需要0.0秒(实际上约为0.00005秒)才能不做任何事情。 Java在消除无所作为的代码方面更积极。 开发人员不太可能知道他们在做什么。 你没有计算循环,但需要多长时间才能检测并消除循环。 简而言之