用@staticmethod装饰的功能和用@staticmethod装饰的功能有@staticmethod @classmethod ? Maybe a bit of example code will help: Notice the difference in the call signatures of foo , class_foo and static_foo : class A(object): def foo(self,x): print "executing foo(%s,%s)"%(self,x) @classmethod def class_foo(cls,x): print "executing class_foo(%s,%s)"%(cls,x) @staticmet
用@staticmethod装饰的功能和用@staticmethod装饰的功能有@staticmethod @classmethod ? 也许有一些示例代码会有帮助:注意foo , class_foo和static_foo的调用签名的static_foo : class A(object): def foo(self,x): print "executing foo(%s,%s)"%(self,x) @classmethod def class_foo(cls,x): print "executing class_foo(%s,%s)"%(cls,x) @staticmethod def static_foo(x):
在下面的方法定义中, *和**对param2做了什么? def foo(param1, *param2): def bar(param1, **param2): The *args and **kwargs is a common idiom to allow arbitrary number of arguments to functions as described in the section more on defining functions in the Python documentation. The *args will give you all function parameters as a tuple: In [1]: def foo(*args): ...: for a in args: ...:
在下面的方法定义中, *和**对param2做了什么? def foo(param1, *param2): def bar(param1, **param2): *args和**kwargs是一个常见的习惯用法,它允许任意数量的函数参数,如本节更多关于定义Python文档中的函数所述。 *args会给你所有的函数参数作为元组: In [1]: def foo(*args): ...: for a in args: ...: print a ...: ...: In [2]: foo(1) 1 In [4]: foo(1,2,3) 1 2 3
I've read that in CPython, the interpreter stack (the list of Python functions called to reach this point) is mixed with the C stack (the list of C functions that were called in the interpreter's own code). If so, then how are generators and coroutines implemented? How do they remember their execution state? Does CPython copy each generator's / coroutine's stack to and from an
我已经在CPython中读到过,解释器堆栈(Python函数的列表被称为达到这一点)与C堆栈(在解释器自己的代码中调用的C函数列表)混合在一起。 如果是这样,那么如何实施发电机和协同程序? 他们如何记住他们的执行状态? CPython是否将每个生成器/协程的堆栈复制到OS堆栈? 还是CPython只是将发生器的最上面的堆栈帧保留在堆上,因为发生器只能从最上面的帧中产生? yield指令将当前正在执行的上下文作为闭包,并将其转换为自
如果Python没有三元条件运算符,是否有可能使用其他语言构造来模拟一个条件运算符? Yes, it was added in version 2.5. The syntax is: a if condition else b First condition is evaluated, then either a or b is returned based on the Boolean value of condition If condition evaluates to True a is returned, else b is returned. For example: >>> 'true' if True else 'false' 'true' >>>
如果Python没有三元条件运算符,是否有可能使用其他语言构造来模拟一个条件运算符? 是的,它是在2.5版本中添加的。 语法是: a if condition else b 评估第一个condition ,然后根据condition的布尔值返回a或b 如果condition计算结果为真a则返回b ,否则返回b 。 例如: >>> 'true' if True else 'false' 'true' >>> 'true' if False else 'false' 'false' 请注意,条件是表达式,而不是语句。 这
如何查看文件是否存在,而不使用try语句? If the reason you're checking is so you can do something like if file_exists: open_it() , it's safer to use a try around the attempt to open it. Checking and then opening risks the file being deleted or moved or something between when you check and when you try to open it. If you're not planning to open the file immediately, you can use os.pa
如何查看文件是否存在,而不使用try语句? 如果您正在检查的原因是这样你就可以做这样的事情if file_exists: open_it()它的安全使用try围绕试图打开它。 检查然后打开文件被删除或移动的风险,或者在您检查和尝试打开文件时出现的风险。 如果你不打算立即打开文件,你可以使用os.path.isfile 如果路径是现有的常规文件,则返回True 。 这遵循符号链接,所以islink()和isfile()对于相同的路径都可以为true。 import os.
什么是元类,我们用它们做什么? A metaclass is the class of a class. Like a class defines how an instance of the class behaves, a metaclass defines how a class behaves. A class is an instance of a metaclass. While in Python you can use arbitrary callables for metaclasses (like Jerub shows), the more useful approach is actually to make it an actual class itself. type is the usual metaclass in
什么是元类,我们用它们做什么? 元类是一个类的类。 就像一个类定义一个类的实例的行为一样,元类定义了一个类的行为。 一个类是元类的一个实例。 在Python中,你可以为元类使用任意可调参数(比如Jerub演示),但更有用的方法实际上是将它自己变成一个实际的类。 type是Python中通常的元类。 如果你想知道,是的, type本身就是一个类,它是它自己的类型。 您将无法重新创建类似于Python的type ,但是Python会作弊。
What is the use of the yield keyword in Python? What does it do? For example, I'm trying to understand this code 1 : def _get_child_candidates(self, distance, min_dist, max_dist): if self._leftchild and distance - max_dist < self._median: yield self._leftchild if self._rightchild and distance + max_dist >= self._median: yield self._rightchild And this is t
Python中yield关键字的用法是什么? 它有什么作用? 例如,我试图理解这个代码1 : def _get_child_candidates(self, distance, min_dist, max_dist): if self._leftchild and distance - max_dist < self._median: yield self._leftchild if self._rightchild and distance + max_dist >= self._median: yield self._rightchild 这是来电者: result, candidates = [], [self] while cand