I am wondering if anyone knows a way to generate a connection to a SQLite database in python from a StringIO object. I have a compressed SQLite3 database file and I would like to decompress it using the gzip library and then connect to it without first making a temp file. I've looked into the slqite3 library source, but it looks like filename gets passed all the way through into the C cod
我想知道是否有人知道一种方法来从一个StringIO对象在Python中生成一个SQLite数据库的连接。 我有一个压缩的SQLite3数据库文件,我想使用gzip库对其进行解压缩,然后在不首先创建临时文件的情况下连接到它。 我查看了slqite3库的源代码,但它看起来像filename一直通过C代码。 有没有其他的SQLite3连接库可以使用文件ID? 或者是有一些为什么我可以欺骗内置sqlite3库认为我的StringIO(或其他对象类型)是一个实际的文件?
I am trying to create an answer paper marking (multiple choice question) python application. The answer sheet will be scanned into image file (gif,png,jpg,whichever format is needed). My App has access to the database where all the answers are stored. So,all it need is some kind of data from scanned image so that it can compare the answer and calculate the marks. The answer sheet has fixed
我正在尝试创建一个答案纸标记(多项选择题)python应用程序。 答案纸将被扫描到图像文件(gif,png,jpg,无论需要什么格式)。 我的应用程序可以访问存储所有答案的数据库。 所以,它需要的只是扫描图像中的某种数据,以便比较答案和计算标记。 答题纸有固定的尺寸和表格格式(答案将由候选人'X'标记以表示他们的答案): 通过互联网搜索后,我发现有几个OCR API可用。 第一个是Pytesser 。 它非常易于使
I need to generate a binary file containing only unique random numbers, with single precision. The purpose is then to calculate the entropy of this file and use it with other datasets entropy to calculate a ratio entropy_file/entropy_randUnique. This value is named "randomness". I can do this in python with double-precision numbers and inserting them into set() , using struct.pack l
我需要生成一个二进制文件,其中只包含唯一的随机数,具有单一精度。 然后计算该文件的熵,并将其与其他数据集的熵结合使用以计算比率entropy_file / entropy_randUnique。 该值被命名为“随机性”。 我可以用双精度数字在python中执行此操作,然后将它们插入到set() ,像这样使用struct.pack : numbers = set() while len(numbers) < size: numbers.add(struct.pack(precision,random.random())) for
I'm trying to stream contacts from the user's address book to our server. Pulling all the contacts into memory at once can crash or make the device unresponsive. I don't want to incur the overhead of writing all the contacts to a file and uploading a file. I can see the data being sent across the wire, but it looks like it's in an invalid format. The server doesn't recogni
我正在尝试将用户通讯录中的联系人流式传输到我们的服务器。 一次将所有联系人拉入内存可能会导致系统崩溃或使设备无响应。 我不想承担将所有联系人写入文件并上传文件的开销。 我可以看到数据通过网络发送,但看起来它的格式无效。 服务器无法识别请求主体。 我正在阅读地址簿中的联系人,并将它们写入NSOutputStream。 这个NSOutputStream通过这段代码与NSInputStream共享一个缓冲区 缓冲用作NSInputStream的NSOutput
In python (tested on 2.7.6) all variables are statically bound to a scope at compile time. This process is well described in http://www.python.org/dev/peps/pep-0227/ and http://docs.python.org/2.7/reference/executionmodel.html It is explicitly stated that "If a name binding operation occurs anywhere within a code block, all uses of the name within the block are treated as references to th
在python中(2.7.6测试),所有变量在编译时静态绑定到一个范围。 这个过程在http://www.python.org/dev/peps/pep-0227/和http://docs.python.org/2.7/reference/executionmodel.html中有详细描述 它明确指出:“如果名称绑定操作发生在代码块中的任何位置,则该块内名称的所有用法都被视为对当前块的引用。” 一个函数是一个代码块,所以下面的代码失败了,因为x在它被使用之后被分配(所以在编译时它被定义为本地的,因为它
This question already has an answer here: Difference between a method and a function 33 answers A function is a callable object in Python, ie can be called using the call operator (though other objects can emulate a function by implementing __call__ ). For example: >>> def a(): pass >>> a <function a at 0x107063aa0> >>> type(a) <type 'function'> A met
这个问题在这里已经有了答案: 方法和函数之间的区别33答案 函数是Python中的可调用对象,即可以使用调用操作符调用(尽管其他对象可以通过实现__call__来模拟函数)。 例如: >>> def a(): pass >>> a <function a at 0x107063aa0> >>> type(a) <type 'function'> 方法是一种特殊的功能类,可以被绑定或不被绑定。 >>> class A: ... def a(self): pass >>>
Given the following python project, created in PyDev: ├── algorithms │ ├── __init__.py │ └── neighborhood │ ├── __init__.py │ ├── neighbor │ │ ├── connector.py │ │ ├── __init__.py │ │ ├── manager.py │ │ └── references.py │ ├── neighborhood.py │ ├── tests │ │ ├── fixtures │ │ │ └── neighborhood │ │ ├── __init__.
鉴于以下PyDev中创建的python项目: ├── algorithms │ ├── __init__.py │ └── neighborhood │ ├── __init__.py │ ├── neighbor │ │ ├── connector.py │ │ ├── __init__.py │ │ ├── manager.py │ │ └── references.py │ ├── neighborhood.py │ ├── tests │ │ ├── fixtures │ │ │ └── neighborhood │ │ ├── __init__.py │ └── web │
I cannot get f2py to reference a parameter from a module in a separate subroutine where it is used to defined an input array dimension. Ie the paramter is defeind in a module: ! File: testmod.f90 MODULE testmod INTEGER, PARAMETER :: dimsize = 20 END MODULE testmod and the parameter dimsize needs to be referenced in a subroutine (NOT contained in the module) in another file, which will be the e
我不能让f2py在一个单独的子程序中使用它来定义一个输入数组维度的模块中引用一个参数。 即参数在一个模块中被证明: ! File: testmod.f90 MODULE testmod INTEGER, PARAMETER :: dimsize = 20 END MODULE testmod 并且参数dimsize需要在另一个文件中的子例程(不包含在模块中)中引用,这将成为我的python模块的入口点: ! File testsub.f90 SUBROUTINE testsub(arg) USE testmod REAL, INTENT(IN) :: arg(dimsize) END SUBR
I'm evaluating and looking at using CherryPy for a project that's basically a JavaScript front-end from the client-side (browser) that talks to a Python web service on the back-end. So, I really need something fast and lightweight on the back-end that I can implement using Python that then speaks to the PostgreSQL DB via an ORM (JSON to the browser). I'm also looking at Django, whi
我正在评估并考虑将CherryPy用于基本上来自客户端(浏览器)的JavaScript前端项目,该项目与后端的Python Web服务对话。 所以,我真的需要在后端使用Python来实现快速且轻量级的功能,然后通过ORM(浏览器的JSON)与PostgreSQL数据库对话。 我也看着我喜欢的Django,因为它的ORM是内置的。 不过,我认为Django可能比我真正需要的要多一点(即更多的功能比我真正需要的更慢==)。 任何人都有不同的Python ORM解决方案的经验
In django, creating a User has a different and unique flow from the usual Model instance creation. You need to call create_user() which is a method of BaseUserManager . Since django REST framework's flow is to do restore_object() and then save_object() , it's not possible to simply create Users using a ModelSerializer in a generic create API endpoint, without hacking you way through.
在Django中,创建一个User有与通常的Model实例创建不同且独特的流程。 你需要调用create_user()这是BaseUserManager一个方法。 由于django REST框架的流程是执行restore_object() ,然后执行save_object() ,因此不可能在通用的create API端点中简单地使用ModelSerializer创建用户,而不会破解你的方法。 什么将是一个干净的方式来解决这个问题? 或者至少让它使用django的内置管道工作? 编辑: 重要的是要注意,特别