Is there a way to init a list without using square bracket in Python?

Is there a way to init a list without using square bracket in Python? For example, is there a function like list_cons so that: x = list_cons(1, 2, 3, 4) is equivalent to: x = [1, 2, 3, 4] In [1]: def list_cons(*args): ...: return list(args) ...: In [2]: list_cons(1,2,3,4) Out[2]: [1, 2, 3, 4] 使用列表构造函数并将它传递给一个元组。 x = list((1,2,3,4)) I don't think that would

有没有办法在不使用Python中的方括号的情况下初始化列表?

有没有办法在不使用Python中的方括号的情况下初始化列表? 例如,是否有像list_cons这样的函数: x = list_cons(1, 2, 3, 4) 相当于: x = [1, 2, 3, 4] In [1]: def list_cons(*args): ...: return list(args) ...: In [2]: list_cons(1,2,3,4) Out[2]: [1, 2, 3, 4] 使用列表构造函数并将它传递给一个元组。 x = list((1,2,3,4)) 我认为这不是一个特别有用的功能。 输入括号如此困难? 也许我们可以给你一

Print range of numbers on same line

Using python I want to print a range of numbers on the same line. how can I do this using python, I can do it using C by not adding n , but how can I do it using python. for x in xrange(1,10): print x I am trying to get this result. 1 2 3 4 5 6 7 8 9 10 for x in xrange(1, 10): print x, >>>print(*range(1,11)) 1 2 3 4 5 6 7 8 9 10 Python单行打印范围在这种情况下, str.join将是

在同一行上打印数字范围

使用Python我想在同一行上打印一系列数字。 我怎样才能使用python来做到这一点,我可以通过不添加n来使用C来做到这一点,但我怎样才能使用python来做到这一点。 for x in xrange(1,10): print x 我正试图得到这个结果。 1 2 3 4 5 6 7 8 9 10 for x in xrange(1, 10): print x, >>>print(*range(1,11)) 1 2 3 4 5 6 7 8 9 10 Python单行打印范围在这种情况下, str.join将是合适的>>> print ' '.

Trouble understanding python syntax for assigning variables

This question already has an answer here: Unpacking, extended unpacking, and nested extended unpacking 3 answers a, b = b, a + b is the equivalent of a = b; b = a + b a = b; b = a + b except this would use the new value of a when assigning to b , not the original as intended.

无法理解分配变量的Python语法

这个问题在这里已经有了答案: 解压缩,扩展拆包,并嵌套扩展拆包3答案 a, b = b, a + b 相当于 a = b; b = a + b a = b; b = a + b除了这将使用分配给b时的a的新值,而不是预期的原始值。

Python what is '*' used for

This question already has an answer here: Unpacking, extended unpacking, and nested extended unpacking 3 answers This is called the "splat" operator. For more information on it, see the Python documentation on it. What it's basically doing is this: print(reversed(binary)[0], reversed(binary)[1], ..., sep='') Essentially, it uses the array elements as arguments instead of pa

Python什么是'*'用于

这个问题在这里已经有了答案: 解压缩,扩展拆包,并嵌套扩展拆包3答案 这被称为“splat”操作符。 有关它的更多信息,请参阅它上面的Python文档。 它基本上做的是这样的: print(reversed(binary)[0], reversed(binary)[1], ..., sep='') 本质上,它使用数组元素作为参数,而不是将数组作为单个参数本身传递。 >>> lst = [1, 2, 3] >>> print(lst) # equivalent to `print([1, 2, 3])' [1, 2, 3] >

Why isn't Python very good for functional programming?

I have always thought that functional programming can be done in Python. Thus, I was surprised that Python didn't get much of a mention in this question, and when it was mentioned, it normally wasn't very positive. However, not many reasons were given for this (lack of pattern matching and algebraic data types were mentioned). So my question is: why isn't Python very good for funct

为什么Python不适合函数式编程?

我一直认为可以用Python完成函数式编程。 因此,我很惊讶Python在这个问题上没有提到太多的内容,当提到时,它通常不是很积极。 然而,没有给出很多理由(缺少模式匹配和代数数据类型)。 所以我的问题是:为什么Python不是很适合函数式编程? 是否有比缺少模式匹配和代数数据类型更多的原因? 或者这些概念对函数式编程如此重要,以至于不支持它们的语言只能被归类为二次函数式编程语言? (请记住,我的函数式编程经验非

Large data with pivot table using Pandas

I'm currently using Postgres database to store survey answers. My problem I'm facing is that I need to generate pivot table from Postgres database. When the dataset is small, it's easy to just read whole data set and use Pandas to produce the pivot table. However, my current database now has around 500k rows, and it's increasing around 1000 rows per day. Reading whole datas

大数据与使用熊猫的数据透视表

我目前使用Postgres数据库来存储调查答案。 我面临的问题是我需要从Postgres数据库生成数据透视表。 当数据集很小时,读取整个数据集并使用Pandas生成数据透视表很容易。 但是,我目前的数据库现在有大约500k行,并且每天增加大约1000行。 读取整个数据集不再有效。 我的问题是,我是否需要使用HDFS将数据存储在磁盘上并将其提供给Pandas以进行旋转? 我的客户需要几乎实时地查看数据透视表输出。 我们有办法解决它

Creation of large pandas DataFrames from Series

I'm dealing with data on a fairly large scale. For reference, a given sample will have ~75,000,000 rows and 15,000-20,000 columns. As of now, to conserve memory I've taken the approach of creating a list of Series (each column is a series, so ~15K-20K Series each containing ~250K rows). Then I create a SparseDataFrame containing every index within these series (because as you notice,

从系列创建大熊猫数据框

我正在处理相当大规模的数据。 作为参考,给定的样品将具有约75,000,000个行和15,000-20,000个柱。 到目前为止,为了节省内存,我采用了创建系列列表的方法(每列都是一系列,所以〜15K-20K系列每个都包含〜250K行)。 然后,我创建一个SparseDataFrame,其中包含这些系列中的每个索引(因为您注意到,这是一个很大但不是很密集的数据集)。 问题是这变得非常缓慢,并且将每列附加到数据集需要几分钟的时间。 为了克服这个

Appending Column to Frame of HDF File in Pandas

I am working with a large dataset in CSV format. I am trying to process the data column-by-column, then append the data to a frame in an HDF file. All of this is done using Pandas. My motivation is that, while the entire dataset is much bigger than my physical memory, the column size is managable. At a later stage I will be performing feature-wise logistic regression by loading the columns ba

在Pandas中将列附加到HDF文件的帧中

我正在使用CSV格式的大型数据集。 我正在尝试逐列处理数据,然后将数据追加到HDF文件中的帧中。 所有这些都是使用Pandas完成的。 我的动机是,虽然整个数据集比我的物理内存大得多,但列大小是可管理的。 在稍后的阶段,我将通过将列逐个加载回内存并对其进行操作来执行功能逻辑回归。 我能够创建一个新的HDF文件并在第一列创建一个新的帧: hdf_file = pandas.HDFStore('train_data.hdf') feature_column = pandas.read_c

pandas: How do I split text in a column into multiple rows?

I'm working with a large csv file and the next to last column has a string of text that I want to split by a specific delimiter. I was wondering if there is a simple way to do this using pandas or python? CustNum CustomerName ItemQty Item Seatblocks ItemExt 32363 McCartney, Paul 3 F04 2:218:10:4,6 60 31316 Lennon, John 25

熊猫:如何将一列中的文本分成多行?

我正在处理一个大的csv文件,最后一列的下一列有一串我想用特定分隔符分割的文本。 我想知道是否有一种简单的方法来使用熊猫或Python来做到这一点? CustNum CustomerName ItemQty Item Seatblocks ItemExt 32363 McCartney, Paul 3 F04 2:218:10:4,6 60 31316 Lennon, John 25 F01 1:13:36:1,12 1:13:37:1,13 300 我想按照Seatblocks列中的

Large, persistent DataFrame in pandas

I am exploring switching to python and pandas as a long-time SAS user. However, when running some tests today, I was surprised that python ran out of memory when trying to pandas.read_csv() a 128mb csv file. It had about 200,000 rows and 200 columns of mostly numeric data. With SAS, I can import a csv file into a SAS dataset and it can be as large as my hard drive. Is there something analo

大熊猫中持久的DataFrame

我正在探索作为长期SAS用户切换到python和pandas。 但是,今天在运行一些测试时,我感到惊讶的是,python在试图pandas.read_csv()一个128mb的csv文件时耗尽了内存。 它有大约20万行和200列的大部分数字数据。 借助SAS,我可以将csv文件导入SAS数据集,并且可以与我的硬盘一样大。 pandas有类似的东西吗? 我经常使用大文件,无法访问分布式计算网络。 原则上,它不应该耗尽内存,但目前由于一些复杂的Python内部问题