I am using scikit-learn Multinomial Naive Bayes classifier for binary text classification (classifier tells me whether the document belongs to the category X or not). I use a balanced dataset to train my model and a balanced test set to test it and the results are very promising. This classifer needs to run in real time and constantly analyze documents thrown at it randomly. However, when I
我使用scikit-learn Multinomial朴素贝叶斯分类器进行二进制文本分类(分类器告诉我文档是否属于X类别)。 我使用一个平衡的数据集来训练我的模型和一个平衡的测试集来测试它,结果非常有希望。 这个分类器需要实时运行并不断分析随机抛出的文档。 然而,当我在生产中运行分类器时,误报数量非常高,因此我的精度非常低。 原因很简单:分类器在实时场景中遇到了更多的负面样本(大约90%的时间),这不符合用于测试和训练
I am trying to pass BioPython sequences to Ilya Stepanov's implementation of Ukkonen's suffix tree algorithm in iPython's notebook environment. I am stumbling on the argparse component. I have never had to deal directly with argparse before. How can I use this without rewriting main()? By the by, this writeup of Ukkonen's algorithm is fantastic. I've had a similar prob
我试图在iPython的笔记本环境中将BioPython序列传递给Ilya Stepanov在Ukkonen后缀树算法中的实现。 我在argparse组件上磕磕绊绊。 我从来没有必须直接处理argparse。 如何在不重写main()的情况下使用它? 由此,这个Ukkonen算法的写法非常棒。 我以前有类似的问题,但使用optparse而不是argparse 。 您不需要更改原始脚本中的任何内容,只需将如下所示的新列表分配给sys.argv : if __name__ == "__main__": fro
This question already has an answer here: Permutation of string as substring of another 6 answers A pure python solution for getting an object which corresponds to how many of that char in the alphabet is in a string (t) Using the function chr() you can convert an int to its corresponding ascii value, so you can easily work from 97 to 123 and use chr() to get that value of the alphabet. S
这个问题在这里已经有了答案: 将字符串排列为另外6个答案的子字符串 一个纯粹的Python解决方案,用于获取与字符串中字符的字符数(t)相对应的对象, 使用函数chr()您可以将int转换为相应的ascii值,因此您可以轻松地使用97至123并使用chr()来获取该字母表的值。 所以如果你有一个字符串说: t = "abracadabra" 那么你可以做一个for-loop如: dt = {} for c in range(97, 123): dt[chr(c)] = t.count(chr(c)) 这
Originally wanted an algorithm to find the longest substring between two python Strings. The general answer for the best runtime was "to construct a suffix tree", based on the online consensus for a linear runtime. However, there are zero examples online on any of this, and it's not surprising because suffix trees are noted to be incredibly complicated and unintuitive to construct
最初想要一种算法来找到两个python字符串之间最长的子字符串。 基于对线性运行时的在线一致性,最佳运行时的一般答案是“构建后缀树”。 然而,在这里没有任何网上的例子,并且这并不奇怪,因为后缀树被指出是非常复杂和不直观的构造。 我实施了一个DP解决方案(仍然是二次的),对于我想要做的事情来说太慢了。 尝试使用Python的difflib.find_longest_match,它更快(但它仍然没有像id那样快)。 所以如果有人知道,find_
I want to turn my _model_fn for Estimator into a multi GPU solution. Is there a way to do it within the Esitmator API or do I have to explicitly code device placement and synchronization. I know I can use tf.device('gpu:X') to place my model on GPU X . I also know I can loop over available GPU names to replicate my model across multiple GPUs. I also know I can use a single input que
我想将Estimator _model_fn转换为多GPU解决方案。 有没有办法在Esitmator API中做到这一点,或者我必须明确地编码设备放置和同步。 我知道我可以使用tf.device('gpu:X')将我的模型放置在GPU X 。 我也知道我可以循环使用可用的GPU名称以在多个GPU上复制我的模型。 我也知道我可以为多个GPU使用单个输入队列。 我不知道的是哪些部分(优化器,损失计算),我实际上可以移动到GPU以及必须在哪里同步计算。 从Cif
I'm getting a really weird problem with P4Python since I started implementing workspace awareness. The situation is as follows: I have a "P4Commands" module which inherits P4 and connects in the __init__() Then, I have respectively the following classes: P4User P4Workspace P4Changelist The P4Commands module inherits P4 and calls its parent's "run" method
自从我开始实施工作空间感知以来,我在使用P4Python时遇到了一个非常奇怪的问题。 情况如下: 我有一个“P4Commands”模块,它继承P4并在__init__() 然后,我分别有以下类: P4USER P4Workspace P4Changelist P4Commands模块继承了P4并调用其父的“run”方法,同时还注入了一些自定义缓存以加速大量调用。 运行方法被调用如下: result = super(P4Commands, self).run(*args, **kwargs) 然后记录并返回。 当我在
I am trying to fit at TensorForestEstimator model with numerical floating-point data representing 7 features and 7 labels. That is, the shape of both features and labels is (484876, 7) . I set num_classes=7 and num_features=7 in ForestHParams appropriately. The format of the data is as follows: f1 f2 f3 f4 f5 f6 f7 l1 l2 l3 l4 l5 l6
我试图在TensorForestEstimator模型中使用表示7个特征和7个标签的数值浮点数据。 也就是说, features和labels的形状是(484876, 7) 。 我在ForestHParams适当地设置了num_classes=7和num_features=7 。 数据格式如下: f1 f2 f3 f4 f5 f6 f7 l1 l2 l3 l4 l5 l6 l7 39000.0 120.0 65.0 1000.0 25.0 0.69 3.94 39000.0 39959.0 42099.0 46153.0 49969
I had originally coded the program wrongly. Instead of returning the Fibonacci numbers between a range (ie. startNumber 1, endNumber 20 should = only those numbers between 1 & 20), I have written for the program to display all Fibonacci numbers between a range (ie. startNumber 1, endNumber 20 displays = First 20 Fibonacci numbers). I thought I had a sure-fire code. I also do not see why th
我最初编写的程序错误。 代替的范围之间返回斐波那契数的(即startNumber 1,endNumber 20应该=只有1 20之间的那些数),我已经写了该程序的范围之间显示所有斐波那契数(即startNumber 1,endNumber 20显示器=前20个斐波纳契数字)。 我以为我有一个确定的代码。 我也不明白为什么会发生这种情况。 startNumber = int(raw_input("Enter the start number here ")) endNumber = int(raw_input("Enter the end number here "))
I would like to confirm my ideas are correct for worst case/best case scenarios of the following code: def function2(L, x): ans = 0 index = len(L) while (index > 0): i = 0 while i < 1000000: i = i + 1 ans = ans + L[index - 1] index = index // 2 if (x == L[-1]): return ans else: for i in range(len(L)): ans = ans + 1 return ans I would think that bes
我想确认我的想法对于以下代码的最坏情况/最佳情况是正确的: def function2(L, x): ans = 0 index = len(L) while (index > 0): i = 0 while i < 1000000: i = i + 1 ans = ans + L[index - 1] index = index // 2 if (x == L[-1]): return ans else: for i in range(len(L)): ans = ans + 1 return ans 我认为最好的情况是O(sqrt(n)),因为索引// 2是最好的因素。 我认
Image mosaics use a set of predefined squared images to build a larger image (example here). There are a lot of solutions and it's quite trivial to achieve this effect. However, it becomes much harder with the following constraints: The shape of the original mosaics is abstract. Any convex polygon could do. Each mosaic can only be used once. There is no need for the mosaics to be abs
图像马赛克使用一组预定义的平方图像来构建更大的图像(此处为示例)。 有很多解决方案,并且实现这种效果相当微不足道。 但是,由于以下限制,它变得更加困难: 原始马赛克的形状是抽象的。 任何凸多边形都可以。 每个镶嵌图只能使用一次。 马赛克不需要绝对包装(即占据画布的100%),但是它们应该尽可能地包装而不重叠。 我试图自动化古代艺术,特别是Opus palladianum技术。 我的想法是使用模拟退火或其他启发