Does Python have a rope data structure?

In writing some Python code, I came upon a need for a string-like data structure that offers fast insertion into, access to, and deletion from arbitrary positions. The first data structure that came to mind was a rope. Does Python have a rope data structure already implemented somewhere? I've looked through the standard library and PyPI, but I haven't seen one. (It doesn't help th

Python是否有绳索数据结构?

在编写一些Python代码时,我需要一个类似字符串的数据结构,以提供对任意位置的快速插入,访问和删除。 想到的第一个数据结构是一根绳子。 Python是否有一个已经实现的绳索数据结构? 我已经浏览了标准库和PyPI,但我没有看到过。 (这对Python的重构库并没有什么帮助,它的名字叫做Rope,还有一家叫做Python Rope的公司,它出售钢丝绳。) 标准库中没有一个,但有实现,例如pyropes 。 还有一些Python的各种非内置数据

Implementing Adagrad in Python

I'm trying to implement Adagrad in Python. For learning purposes, I am using matrix factorisation as an example. I'd be using Autograd for computing the gradients. My main question is if the implementation is fine. Problem description Given a matrix A (M x N) having some missing entries, decompose into W and H having sizes (M xk) and (k XN) respectively. Goal would to learn W and

在Python中实现Adagrad

我正在尝试在Python中实现Adagrad。 出于学习目的,我使用矩阵因式分解作为例子。 我将使用Autograd来计算渐变。 我的主要问题是如果执行情况良好。 问题描述 给定具有一些缺失条目的矩阵A(M×N),分解为分别具有大小(M×k)和(k×N)的W和H. 目标将使用Adagrad学习W和H. 我会按照Autograd实现的这个指南。 注意:我非常清楚基于ALS的实现非常适合。 我只是为了学习目的而使用Adagrad 习惯性进口 import autogra

Optimization of importing modules in Python

I am reading David Beazley's Python Reference book and he makes a point: For example, if you were performing a lot of square root operations, it is faster to use 'from math import sqrt' and 'sqrt(x)' rather than typing 'math.sqrt(x)'. and: For calculations involving heavy use of methods or module lookups, it is almost always better to eliminate the attribute look

Python中导入模块的优化

我正在阅读David Beazley的Python参考书,他指出: 例如,如果您正在执行大量的平方根操作,则使用'从数学导入sqrt'和'sqrt(x)'而不是输入'math.sqrt(x)'会更快。 和: 对于涉及大量使用方法或模块查找的计算,通过首先将要执行的操作放入局部变量来消除属性查找几乎总是更好。 我决定尝试一下: 第一() def first(): from collections import defaultdict x = defaultdict(lis

Optimizing iteration of list in list on python

I have a bit of an optimization problem (I am sort of new to python and Stackoverflow). I am building a word collocation network for a research project. The code I wrote takes a stemmed text without stop words (text_c) and splits it into sentences. For each sentence, it the iterates over the terms in order to build a weighed semantic network that I will then process with NetworkX. This is pa

在Python中优化列表中的列表迭代

我有一个优化问题(我对Python和Stackoverflow有点新鲜)。 我正在为一个研究项目建立一个词语搭配网络。 我所写的代码需要一个没有停用词的词干文本(text_c)并将其分解成句子。 对于每个句子,它都会对术语进行迭代,以建立一个加权的语义网络,然后我将使用NetworkX进行处理。 这部分基于{'word':digit}形式的字典(下面的词典)。 代码遍历网络中现有边缘的列表(表示为3个项目的列表)。 问题可能是网络

Which is faster in Python: x**.5 or math.sqrt(x)?

I've been wondering this for some time. As the title say, which is faster, the actual function or simply raising to the half power? UPDATE This is not a matter of premature optimization. This is simply a question of how the underlying code actually works. What is the theory of how Python code works? I sent Guido van Rossum an email cause I really wanted to know the differences in the

Python中更快:x **。5或math.sqrt(x)?

我一直在想这个。 正如标题所说,哪个更快,实际功能还是简单地提高到一半的功率? UPDATE 这不是过早优化的问题。 这只是底层代码实际工作的问题。 Python代码的工作原理是什么? 我给Guido van Rossum发了一封电子邮件,因为我真的很想知道这些方法的不同之处。 我的电子邮件: 至少有三种方法可以在Python中做平方根:math.sqrt,'**'运算符和pow(x,.5)。 我只是好奇于每个实现的差异。 谈到效率更

Tensorflow: simultaneous prediction on GPU and CPU

I'm working with tensorflow and I want to speed up the prediction phase of a pre-trained Keras model (I'm not interested in the training phase) by using simultaneously the CPU and one GPU. I tried to create 2 different threads that feed two different tensorflow sessions (one that runs on CPU and the other that runs on GPU). Each thread feeds a fixed number of batches (eg if we have an

Tensorflow:同时预测GPU和CPU

我正在使用tensorflow,我想通过同时使用CPU和一个GPU来加速预训练的Keras模型(我对训练阶段不感兴趣)的预测阶段。 我尝试创建两个不同的线程,这两个线程提供两个不同的tensorflow会话(一个运行在CPU上,另一个运行在GPU上)。 每个线程提供固定数量的批处理(例如,如果我们总共有100个批处理,我希望为循环中的CPU分配20个批处理,或者在GPU上分配80个批处理,或者将这两个批处理任意组合),然后合并结果。 如果分割

Speeding Up Python

This is really two questions, but they are so similar, and to keep it simple, I figured I'd just roll them together: Firstly : Given an established python project, what are some decent ways to speed it up beyond just plain in-code optimization? Secondly : When writing a program from scratch in python, what are some good ways to greatly improve performance? For the first question, imagin

加速Python

这实际上是两个问题,但它们非常相似,为了简单起见,我想我会把它们放在一起: 首先 :给定一个已建立的python项目,有什么体面的方法可以加速它不仅仅是简单的代码内优化? 其次 :在python中从头开始编写程序时,有什么方法可以大大提高性能? 对于第一个问题,假设你是一个写得很好的项目,你需要提高性能,但你似乎无法通过重构/优化获得很大的收益。 在这种情况下,你会怎么做才能加快速度,而不是像C一样重写它?

Irregular shape detection and measurement in python opencv

I'm attempting to do some image analysis using OpenCV in python, but I think the images themselves are going to be quite tricky, and I've never done anything like this before so I want to sound out my logic and maybe get some ideas/practical code to achieve what I want to do, before I invest a lot of time going down the wrong path. This thread comes pretty close to what I want to achiev

python opencv中不规则的形状检测和测量

我试图在Python中使用OpenCV进行一些图像分析,但我认为这些图像本身会非常棘手,而且我从来没有做过这样的事情,所以我想说出我的逻辑,也许有一些想法/实际的代码来实现我想要做的事情,然后再投入大量时间走向错误的道路。 这个线程非常接近我想要达到的目标,在我看来,使用的图像应该比我的分析更难分析。 我会对这些彩色斑点的大小感兴趣,而不是它们与左上角的距离。 我也一直在关注这段代码,尽管我对引用对象并不特

Starting debugger on errors in threads

I'm using following trick to get debugger started on error Starting python debugger automatically on error Any idea how to make this also work for errors that happen in newly created threads? I'm using thread pool, something like http://code.activestate.com/recipes/577187-python-thread-pool/ I'd say inject that code in the beginning of each Thread's run(). If you don't

启动线程中的错误调试器

我使用以下技巧让调试器启动时出错错误时自动启动python调试器 任何想法如何使这也适用于新创建的线程中发生的错误? 我正在使用线程池,像http://code.activestate.com/recipes/577187-python-thread-pool/ 我会说在每个线程的运行开始()注入代码。 如果你不想改变这个代码,你可以像这样做monkeypatch: Worker.run = lambda *a: [init_pdb(), Worker.run(*a)][-1] 或者像这样: def wrapper(*a): # init pdb h

PyQt Window Focus on right

I have a very basic setup. A main dialog window made with: dialog = QtGui.QDialog() Then a couple commands to set it visible: dialog.setFocus(True) dialog.show() dialog.raise_() dialog.activateWindow() app.exec_() One of this dialog window widgets has a right-click menu connected. The problem: A right-clicking on a QtGui.QDialog dialog window (app) does not make it "current"

PyQt窗口关注权利

我有一个非常基本的设置。 一个主要的对话框窗口: dialog = QtGui.QDialog() 然后一些命令将其设置为可见: dialog.setFocus(True) dialog.show() dialog.raise_() dialog.activateWindow() app.exec_() 其中一个对话框窗口小部件具有连接的右键单击菜单。 问题: 右键单击QtGui.QDialog对话窗口(app)不会使其成为“当前”或“活动”... 示例情况:在两个并排放置的屏幕上打开两个应用程序窗口:左侧是网络浏览器,