conditional graph in tensorflow and for loop that accesses tensor size

First the broad questions: Is it possible to build a conditional graph with tensorflow? If yes, do the automated gradient-calcuation and the implemented optimizers work with it? Can I access the shape of a tensor and turn it into an integer for using it with an "if" condition and a "for i in range()" loop? My actual use case is that I want to do a 1D convolution with v

张量流中的条件图和访问张量大小的循环

首先是广泛的问题: 是否有可能建立一个张量流条件图? 如果是的话,自动渐变计算和实现的优化器是否可以使用它? 我可以访问张量的形状并将其变成一个整数,以便在“if”条件和“for in in range()”循环中使用它吗? 我的实际使用情况是我想要做一个具有可变张量长度的一维卷积。 为此,我首先需要一个if语句,它只在长度大于1时执行卷积。 然后我有一个for循环,它经历了卷积的张量。 问题是这个代码: for i in ran

How to read/process command line arguments?

I am originally a C programmer. I have seen numerous tricks and "hacks" to read many different arguments. What are some of the ways Python programmers can do this? Related What's the best way to grab/parse command line arguments passed to a Python script? Implementing a “[command] [action] [parameter]” style command-line interfaces? How can I process command line argument

如何读取/处理命令行参数?

我原本是C程序员。 我看到许多技巧和“黑客”来阅读许多不同的论点。 Python程序员可以做些什么? 有关 抓取/解析传递给Python脚本的命令行参数的最佳方式是什么? 实现一个“[command] [action] [parameter]”样式的命令行界面? 我如何在Python中处理命令行参数? 如何使用Python的optparse格式化位置参数帮助? 请注意,optparse在Python 2.7版本中已弃用: http://docs.python.org/2/library/optparse.html。

How to run Pylint with PyCharm

I want to configure pylint as an external tool on my entire project directory for a python project that I'm working on. I've tried to use the repository as a module with __init__.py and without, and its not working either way. I'm having difficulty setting up pylint to run with PyCharm. I know that I should be running it as an external tool, however the settings confuse me. The

如何用PyCharm运行Pylint

我想配置pylint作为我正在处理的一个python项目的整个项目目录上的外部工具。 我试图将存储库作为一个模块使用__init__.py和不使用,它不能以任何方式工作。 我无法设置pylint以使用PyCharm运行。 我知道我应该将其作为外部工具运行,但是这些设置让我感到困惑。 他们的文档的权威来源已被打破,所以我也无法检查。 您可以通过以下步骤设置pylint以使用PyCharm: 安装pylint : $ pip install pylint 找到您的pylint

Where does Anaconda Python install on Windows?

I installed Anaconda for Python 2.7 on my Windows machine and wanted to add the Anaconda interpreter to PyDev, but quick googling couldn't find the default place where Anaconda installed, and searching SO didn't turn up anything useful, so. Where does Anaconda 4.0 install on Windows 7? To find where Anaconda was installed I used the "where" command on the command line in Win

Anaconda Python在Windows上安装在哪里?

我在我的Windows机器上安装了用于Python 2.7的Anaconda,并且想将Anaconda解释器添加到PyDev,但是快速的搜索无法找到Anaconda安装的默认位置,并且搜索SO没有发现任何有用的东西,所以。 Anaconda 4.0在Windows 7上安装在哪里? 要找到Anaconda的安装位置,我在Windows的命令行中使用了“where”命令。 C:>where anaconda 对我来说这个回复: C:用户用户名 AppData 本地连续 Anaconda2 脚本 anaconda.exe 这让我能

Find where python is installed (if it isn't default dir)

Python是在我的机器上,我只是不知道在哪里,如果我在终端中输入python,它会打开Python 2.6.4,这不是它的默认目录,肯定有一种方法可以从这里找到它的安装位置? What OS are you using? In unix (mac os X included) you can do which python and it will tell you. sys有一些有用的东西: $ python Python 2.6.6 (r266:84297, Aug 24 2010, 18:13:38) [MSC v.1500 64 bit (AMD64)] on win32 Type "help", "copyright", "c

查找python的安装位置(如果它不是默认目录)

Python是在我的机器上,我只是不知道在哪里,如果我在终端中输入python,它会打开Python 2.6.4,这不是它的默认目录,肯定有一种方法可以从这里找到它的安装位置? 你在使用什么操作系统? 在unix(包括mac os X)中,你可以做which python ,它会告诉你。 sys有一些有用的东西: $ python Python 2.6.6 (r266:84297, Aug 24 2010, 18:13:38) [MSC v.1500 64 bit (AMD64)] on win32 Type "help", "copyright", "credits" or "

how to refer to a parent method in python?

This question already has an answer here: Call a parent class's method from child class in Python? 12 answers If you know you want to use A you can also explicitly refer to A in this way: class B(A): def f(self,num): return 7 * A.f(self,num) remember you have to explicitly give the self argument to the member function Af() Use super : return 7 * super(B, self).f(num) O

如何在python中引用父方法?

这个问题在这里已经有了答案: 在Python中从子类调用父类的方法? 12个答案 如果你知道你想使用A,你也可以用这种方式明确地引用A: class B(A): def f(self,num): return 7 * A.f(self,num) 记住你必须明确地给成员函数Af() 使用super : return 7 * super(B, self).f(num) 或者在Python 3中,它只是: return 7 * super().f(num) 与其他答案一致,有多种方法可以调用超类方法(包括构造函数),但

Python inheritance from lists

This question already has an answer here: Understanding Python super() with __init__() methods [duplicate] 7 answers You need to make a super call to instantiate the object using the parents __init__ method first: class Person(list): def __init__(self, a_name, a_dob=None, a_books=[]): #person initialization code super(Person, self).__init__(a_books) self.name = a_

Python从列表继承

这个问题在这里已经有了答案: 用__init __()方法理解Python super()7个答案 您需要首先使用父类__init__方法进行super调用来实例化对象: class Person(list): def __init__(self, a_name, a_dob=None, a_books=[]): #person initialization code super(Person, self).__init__(a_books) self.name = a_name self.dob = a_dob print Person('bob',a_books=['how to bob']) 给出

What is the function of

This question already has an answer here: Understanding Python super() with __init__() methods [duplicate] 7 answers How to invoke the super constructor? 5 answers What does 'super' do in Python? 5 answers __init__ is used to initialize class objects. When you create a new object of myThread , it first calls threading.Thread.__init__(self) and then defines two attributes str1 a

什么是功能

这个问题在这里已经有了答案: 用__init __()方法理解Python super()7个答案 如何调用超级构造函数? 5个答案 “超级”在Python中做什么? 5个答案 __init__用于初始化类对象。 当你创建一个myThread的新对象时,它首先调用threading.Thread.__init__(self) ,然后定义两个属性str1和str2。 请注意,您明确地调用threading.Thread ,它是myThread的基类。 最好通过super(myThread, cls).__init__(self)引用父__i

what does <class 'super'>class do in python?

This question already has an answer here: Understanding Python super() with __init__() methods [duplicate] 7 answers super(Child, self).__init__() <=> SomeBaseClass.__init__(self) It provides a nice shorthand for calling a method on the parent class without having to type it explicitly, which can be long (programmers are lazy) and error-prone. If you change your code later such that Ch

<class'super'> class在python中做了什么?

这个问题在这里已经有了答案: 用__init __()方法理解Python super()7个答案 super(Child, self).__init__() <=> SomeBaseClass.__init__(self) 它为调用父类的方法提供了一个很好的速记,而不必显式地键入它,这可能很长(程序员很懒)并且容易出错。 如果稍后更改代码以使Child不再是SomeBaseClass ,而是改为AnotherBaseClass ,则不必更改对构造函数的调用(由于它本身不会被默认调用,所以它不需要) 请注

Python's super() , what exactly happens?

This question already has an answer here: Understanding Python super() with __init__() methods [duplicate] 7 answers __init__ isn't a constructor, it's an initializer . By the time __init__ is called, the objects has already been constructed (via __new__ ). So you get only one object, but it's initialized twice - for example, ElectricCar.__init__ may decide to re-initialize self

Python的super(),到底发生了什么?

这个问题在这里已经有了答案: 用__init __()方法理解Python super()7个答案 __init__不是构造函数,它是一个初始值设定项 。 到__init__被调用时,对象已经被构建(通过__new__ )。 所以你只能得到一个对象,但它被初始化了两次 - 例如, ElectricCar.__init__可能决定在Car.__init__被运行后重新初始化self.model 。 当调用super() ,在当前实例的上下文中查找适当的基类。 基本上,在您的示例中, super().__in