How to use Mathematica functions in Python programs?

I'd like to know how can I call Mathematica functions from Python. I appreciate a example, for example, using the Mathematica function Prime . I had search about MathLink but how to use it in Python is a little obscure to me. I tried to use a Mathematica-Python library called pyml but I hadn't no sucess, maybe because this lib looks very old (in tutorial says Mathematica 2 or 3).

如何在Python程序中使用Mathematica函数?

我想知道如何从Python调用Mathematica函数。 我赞赏一个例子,例如,使用Mathematica函数Prime 。 我搜索了MathLink,但是如何在Python中使用它对我来说有些模糊。 我试图使用一个名为pyml的Mathematica-Python库,但我没有成功,也许是因为这个库看起来很老旧(在Mathematica 2或3的教程中)。 尝试在Wolfram/Mathematica/8.0/SystemFiles/Links/Python编译源代码,但在使用python 2.6时遇到了一些错误(文档说只适用于

How to parse an ISO 8601

I need to parse RFC 3339 strings like "2008-09-03T20:56:35.450686Z" into Python's datetime type. I have found strptime in the Python standard library, but it is not very convenient. What is the best way to do this? The python-dateutil package can parse not only RFC 3339 datetime strings like the one in the question, but also other ISO 8601 date and time strings that don't

如何解析ISO 8601

我需要将RFC 3339字符串解析为Python的datetime类型,如"2008-09-03T20:56:35.450686Z" 。 我已经在Python标准库中找到了strptime ,但它不是很方便。 做这个的最好方式是什么? python-dateutil包不仅可以解析RFC 3339日期时间字符串(如问题中的日期时间字符串),还可以解析不符合RFC 3339的其他ISO 8601日期和时间字符串(例如没有UTC偏移量的字符串,或者代表只有一个日期)。 >>> import dateuti

User Authentication in Django Rest Framework + Angular.js web app

I'm working on a webapp where users can login to see their online wine cellar. I've got the Django REST models setup, as well as the front-end design in Angular but I'm having trouble putting the pieces together and my main issue is for user authentication. I've read many posts on here and various tutorials but I can't seem to find a step by step method to implement authen

Django Rest框架中的用户认证+ Angular.js Web应用程序

我正在开发一个web应用程序,用户可以登录查看他们的在线酒窖。 我有Django REST模型设置,以及Angular中的前端设计,但我无法将这些部分放在一起,而我的主要问题是用户身份验证。 我在这里和各种教程阅读了很多帖子,但我似乎无法找到一步一步的方法来实现身份验证: 应该使用哪种认证(令牌,会话,其他?) 如何在服务器端管理身份验证(它是一个视图吗?在UserModel或UserManager中的一个方法?) 我有一个自定义

Allow duplicate usernames

I'm working on a project in django which calls for having separate groups of users in their own username namespace. So for example, I might have multiple "organizations", and username should only have to be unique within that organization. I know I can do this by using another model that contains a username/organization id, but that still leaves this useless (and required) field

允许重复的用户名

我正在开发一个django项目,它要求在他们自己的username空间中分隔用户组。 例如,我可能有多个“组织”, username只能在该组织内唯一。 我知道我可以通过使用另一个包含用户名/组织ID的模型来做到这一点,但仍然会在defualt django auth User上留下这个无用的(和必填)字段,我将不得不填充某些内容。 我已经通过自己的身份验证后端编写了一个针对LDAP的用户身份验证。 但是,正如我前面提到的,我还是坚持了如何填充/忽

Prevent SFTP/SSH session timeout with paramiko

I'm using paramiko to connect to an SFTP server on which I have to download and process some files. The server has a timeout set to 5 minutes, but some days it happens that the processing of the files can take longer than the timeout. So, when I want to change the working directory on the server to process some other files sftp.chdir(target_dir)) I get an exception that the connection has

用paramiko防止SFTP / SSH会话超时

我使用paramiko连接到一个SFTP服务器,我必须下载并处理一些文件。 服务器的超时设置为5分钟,但有些时候发生的情况是文件的处理时间可能比超时时间长。 所以,当我想改变服务器上的工作目录来处理一些其他文件sftp.chdir(target_dir))我得到了连接超时的异常: 文件buildbdist.win32eggparamikosftp://ftp.py,第138行,在_write_all中引发EOFError() 为了解决这个问题,我认为激活保持活动将是最好的选择,所以我使

Installing psyco for python on Snow Leopard

I'm having some trouble installing psyco on my Macbook pro running Snow Leopard with python 2.6.1. I've been trying to force python to run in 32-bit mode using the command defaults write com.apple.versioner.python Prefer-32-Bit -bool yes Further, I have tried the Macport py26-psyco, which seems to finish but the module cannot be found when compiling. $ sudo python setup.py install

在Snow Leopard上安装python的python

我在使用python 2.6.1运行Snow Leopard的Macbook pro上安装psyco时遇到了一些麻烦。 我一直试图强制python使用该命令在32位模式下运行 defaults write com.apple.versioner.python Prefer-32-Bit -bool yes 此外,我已经尝试Macport py26-psyco,它似乎完成但编译时无法找到该模块。 $ sudo python setup.py install PROCESSOR ='ivm' 运行安装 运行构建 运行build_py 运行build_ext 建立'psyco._

dict issue

So I am new to Tensorflow, I am trying to understand exactly when to use feed_dict and when it is unnecessary. However, I am confused by how the feed_dict works. For example: Will 1 be the same as 2 and 3? 1. accuracy, cost = sess.run([accuracy, cost], feed_dict = {X:X_batch, Y:Y_batch}) 2. accuracy = sess.run(accuracy, feed_dict = {X:X_batch, Y: Y_batch}) cost = sess.run(cost, feed_dic

字典问题

所以我对Tensorflow很陌生,我试图了解何时使用feed_dict以及什么时候不需要。 但是,我对feed_dict的工作原理感到困惑。 例如:1和2和3是一样的吗? 1. accuracy, cost = sess.run([accuracy, cost], feed_dict = {X:X_batch, Y:Y_batch}) 2. accuracy = sess.run(accuracy, feed_dict = {X:X_batch, Y: Y_batch}) cost = sess.run(cost, feed_dict = {X:X_batch, Y:Y_batch}) 3. accuracy = sess.run(accuracy, feed

Simple Feedforward Neural Network with TensorFlow won't learn

I am trying to build a simple neural network with TensorFlow. The goal is to find the center of a rectangle in a 32 pixel x 32 pixel image. The rectangle is described by five vectors. The first vector is the position vector, the other four are direction vectors and make up the rectangle edges. One vector has two values (x and y). The corresponding input for this image would be (2,5)(0,4)(6,

简单的前馈神经网络与TensorFlow不会学习

我正尝试用TensorFlow建立一个简单的神经网络。 目标是在32像素x 32像素的图像中找到矩形的中心。 该矩形由五个向量描述。 第一个矢量是位置矢量,其他四个是方向矢量并组成矩形边缘。 一个矢量有两个值(x和y)。 该图像的相应输入将是(2,5)(0,4)(6,0)(0,-4)( - 6,0) 。 中心(以及所需的输出)位于(5,7)处 。 我想出的代码如下所示: import tensorflow as tf import numpy as np import

Multi layered perceptron in tensorflow not behaving as expected

I have a simple structure that I learned from a video from Siraj Raval of a single layer perceptron in tensorflow. I was trying to extend it to a larger number of layers and I am having difficulty. The first example is 2 inputs and 2 outputs, where weights and biases are applied once and then the softmax function is applied to the output. The second example is 2 inputs and 2 outputs with a h

张量流中的多层感知器不像预期的那样工作

我有一个简单的结构,我从一张Siraj Raval的视频中学习了张量流中的单层感知器。 我试图把它扩展到更多的层次,我很困难。 第一个示例是2个输入和2个输出,其中施加一次权重和偏差,然后将softmax函数应用于输出。 第二个例子是2个输入和2个输出,其间有一个隐藏层(2个单元),所以有两组权重和偏差,并且在每个输入之后应用softmax函数。 我试图将简单情况扩展到N隐藏层的情况,但由于当我添加额外的图层时它们的成功有

Kwargs in Django

What are Kwarg!!?? I have been going through a tutorial in django, trying to learn the language, and I stumbled on this. I would really appreciate if some can post / point to a simple example that would help grasp why and how this is used. Based on Keyword arguments' documentation pointed out by @Ignacio Vazquez-Abrams **kwargs allows you to handle named arguments that you have not de

在Django的Kwargs

什么是Kwarg !! ?? 我一直在通过Django的一个教程,试图学习语言,我偶然发现了这一点。 我真的很感激,如果有人可以发表/指出一个简单的例子,这将有助于理解为什么以及如何使用它。 基于@Ignacio Vazquez-Abrams指出的关键字参数文档 ** kwargs允许您处理您尚未预先定义的命名参数 。 在函数调用中,关键字参数必须跟随位置参数 。 所有传递的关键字参数必须与函数接受的参数之一相匹配 (例如actor不是parrot函数