Question What are the differences between a Framework build and a non-Framework build (ie, standard UNIX build) of Python on Mac OS X? Also, what are the advantages and disadvantages of each? Preliminary Research Here is the information that I found prior to posting this question: [Pythonmac-SIG] Why is Framework build of Python needed B. Grainger: "I seem to recall that a Framewo
题 在Mac OS X上,Framework构建与Python的非构建(即标准UNIX构建)Python之间有什么区别? 另外,每个的优点和缺点是什么? 初步研究 以下是发布此问题之前发现的信息: [Pythonmac-SIG]为什么需要Python的Framework构建 B. Grainger:“我似乎记得,如果你想用本地Mac GUI做任何事情,就需要Python的Framework构建,我的理解是否正确?” C. Barker:“非常多 - 要访问Mac GUI,应用程序需要安装在适当的Mac应用程
I have some code that does an awful lot of string formatting, Often, I end up with code along the lines of: "...".format(x=x, y=y, z=z, foo=foo, ...) Where I'm trying to interpolate a large number of variables into a large string. Is there a good reason not to write a function like this that uses the inspect module to find variables to interpolate? import inspect def interpolate(s):
我有一些代码可以完成很多字符串格式化工作,通常我会按照以下代码结束代码: "...".format(x=x, y=y, z=z, foo=foo, ...) 我试图将大量变量插入到大字符串中。 是否有一个很好的理由不写这样的函数,它使用inspect模块来查找要插入的变量? import inspect def interpolate(s): return s.format(**inspect.currentframe().f_back.f_locals) def generateTheString(x): y = foo(x) z = x + y # more calcu
I have been studying Python, and I read a chapter which describes the None value, but unfortunately this book isn't very clear at some points. I thought that I would find the answer to my question, if I share it there. I want to know what the None value is and what do you use it for? And also, I don't get this part of the book: Assigning a value of None to a variable is one way to
我一直在研究Python,并且阅读了描述None值的一章,但不幸的是,这本书在某些方面并不十分清晰。 我想我会找到我的问题的答案,如果我在那里分享。 我想知道“ None值是什么以及你使用它的目的是什么? 而且,我没有得到这本书的这一部分: 分配的值None给一个变量是将其重置到其原始的,空的状态的一种方法。 那是什么意思? 答案很棒,但由于我对计算机世界的知识水平低下(我还没有学过类,对象等),所以我并不了
I have PyCharm 3.0 installed for Windows and installed IronPython 2.7.4 installed. But it appears that i am not able to get references and it wont recognize .net classes to some degree. Let me give you a simple example: import clr clr.AddReference("System.Windows.Forms") from System.Windows.Forms import MessageBox MessageBox.Show("Hello World") i can run/execute it perfectly fine but the ID
我为Windows安装了PyCharm 3.0,并安装了IronPython 2.7.4。 但似乎我无法获得引用,并且它在某种程度上不会识别.net类。 让我举个简单的例子: import clr clr.AddReference("System.Windows.Forms") from System.Windows.Forms import MessageBox MessageBox.Show("Hello World") 我可以很好地运行/执行它,但IDE向我显示它无法识别System 正如你可以想象的,这是有点......令人沮丧地把它温和地按下alt + enter然后为
I am new to machine learning and wondering the difference between kmeans and kmeans2 in scipy. According to the doc both of them are using the 'k-means' algorithm, but how to choose them? Based on the documentation, it seems kmeans2 is the standard k-means algorithm and runs until converging to a local optimum - and allows you to change the seed initialization. The kmeans function wi
我是机器学习的新手,想知道komeans和kmeans2在scipy中的区别。 根据文档他们都使用'k-means'算法,但如何选择它们? 根据文档,似乎kmeans2是标准的k-means算法,并运行到收敛到局部最优 - 并允许您更改种子初始化。 kmeans函数将基于缺少变化而提前终止,因此甚至可能无法达到局部最优。 此外,它的目标是生成一个码本来映射特征向量。 码本本身不一定是从停止点生成的,而是使用具有最低“失真”的迭代来生成码
Given the following code: from django.db import transaction @transaction.atomic def viewfunc(request): # This code executes inside a transaction. do_stuff() From my understanding of transactions in Django 1.6 if do_stuff throws an exception, say an IntegrityError, then the transaction will be rolled back right. But since Django itself is calling the view nothing will stop the Integrit
给出以下代码: from django.db import transaction @transaction.atomic def viewfunc(request): # This code executes inside a transaction. do_stuff() 根据我对Django 1.6中的事务的理解,如果do_stuff抛出一个异常,比如一个IntegrityError,那么这个事务将被回滚。 但是由于Django自己正在调用视图,没有任何东西会阻止IntegrityError从调用栈上升并导致HTTP 500错误是吗? 让我们假设这不是我们想要的,因
I am trying to parse multiple pcap files using the pynids library, but can get to parse only the 1st file. I saw that there was a function nids_unregister_tcp in libnids, will that help? I can't find that function in pynids though. import nids def handle_tcp_stream(tcp): print "In handle_tcp_stream" def extract(pcap_file): nids.param("tcp_workarounds", 1) nids.param("pcap_f
我正在尝试使用pynids库解析多个pcap文件,但只能解析第一个文件。 我看到在libnids中有一个函数nids_unregister_tcp ,会有帮助吗? 尽管如此,我无法在pynids中找到该功能。 import nids def handle_tcp_stream(tcp): print "In handle_tcp_stream" def extract(pcap_file): nids.param("tcp_workarounds", 1) nids.param("pcap_filter", "tcp") # bpf restrict to TCP only, note nids.param("
I wrote a function that gets as an input a list of unique ints in order,(from small to big). Im supposed to find in the list an index that matches the value in the index. for example if L[2]==2 the output is true. so after i did that in complexity O(logn) i now want to find how many indexes behave like that in the given list with the same complexity O(logn). im uploading my first code that do
我写了一个函数,按照顺序(从小到大)将唯一整数列表作为输入。 我应该在列表中找到与索引中的值匹配的索引。 例如,如果L [2] = 2,则输出为真。 所以在我做了复杂的O(logn)之后,我现在想要查找具有相同复杂度O(logn)的给定列表中有多少个索引的行为。 即时通讯上传我的第一个代码,做第一部分和第二个代码,我需要帮助: def steady_state(L): lower= 0 upper= len(L) -1 while lower<=upper:
I am starting celery via supervisord, see the entry below. [program:celery] user = foobar autostart = true autorestart = true directory = /opt/src/slicephone/cloud command = /opt/virtenvs/django_slice/bin/celery beat --app=cloud -l DEBUG -s /home/foobar/run/celerybeat-schedule --pidfile=/home/foobar/run/celerybeat.pid priority = 100 stdout_logfile_backups = 0 stderr_logfile_backups = 0 stdout_lo
我通过supervisord启动芹菜,请参阅下面的条目。 [program:celery] user = foobar autostart = true autorestart = true directory = /opt/src/slicephone/cloud command = /opt/virtenvs/django_slice/bin/celery beat --app=cloud -l DEBUG -s /home/foobar/run/celerybeat-schedule --pidfile=/home/foobar/run/celerybeat.pid priority = 100 stdout_logfile_backups = 0 stderr_logfile_backups = 0 stdout_logfile_maxbyte
I need to execute a pool of many parallel database connections and queries. I would like to use a multiprocessing.Pool or concurrent.futures ProcessPoolExecutor. Python 2.7.5 In some cases, query requests take too long or will never finish (hung/zombie process). I would like to kill the specific process from the multiprocessing.Pool or concurrent.futures ProcessPoolExecutor that has timed ou
我需要执行许多并行数据库连接和查询池。 我想使用一个multiprocessing.Pool或concurrent.futures ProcessPoolExecutor。 Python 2.7.5 在某些情况下,查询请求会花费太长时间或永远不会结束(挂起/僵尸进程)。 我想杀死已经超时的multiprocessing.Pool或concurrent.futures ProcessPoolExecutor的具体过程。 下面是如何杀死/重新生成整个进程池的示例,但理想情况下,我会尽量减少CPU抖动,因为我只想杀死一个特定的长