django compressor and clevercss with absolute url paths

When using django, compressor, and clevercss, I set my css url to an absolute path. Clevercss is then passed the path of the .ccss file without the COMPRESS_ROOT prefixed (the absolute path). When I set my css url to a relative path, clevercss processes the ccss files, but the browser then correctly looks for relatively placed css files (eg mywebsite.com/profile/user/1/css/stylesheet.css) Com

django压缩器和绝对url路径的聪明

当使用django,压缩器和clevercss时,我将我的css url设置为绝对路径。 然后,Clevercss将传递.ccss文件的路径,而不需要COMPRESS_ROOT前缀(绝对路径)。 当我将我的css url设置为相对路径时,clevercss处理ccss文件,但浏览器然后正确地查找相对放置的css文件(例如mywebsite.com/profile/user/1/css/stylesheet.css) 但是,Compressor会在css链接是相对url时使用MEDIA_ROOT,但在使用绝对url时不会使用MEDIA_ROOT。 这

How to build a GUI application with Python 3.3 and Qt 5?

Having no Python or Qt experience I'd like to get started with the recent versions (I actually seek to make heavy use of some of the new features announced) but I couldn't find any tutorials (the most seem to use Python 2.x and Qt 4). Could you please share a link to a tutorial or just tell me what exactly do I need to started? I have reasonable experience with other languages and am no

如何用Python 3.3和Qt 5构建GUI应用程序?

没有Python或Qt经验我想开始使用最新版本(我实际上试图大量使用已公布的一些新功能),但我找不到任何教程(大多数似乎使用Python 2。 x和Qt 4)。 你能请分享一个教程的链接,或者告诉我究竟我需要开始什么? 我对其他语言有合理的经验,在这个问题中我没有问及学习Python本身的问题。 看看PyQt。 这里是Qt5文档。 当我需要PyQt的帮助时,我会查看Qt文档并将C ++代码“翻译”为Python。

Specifying dictionary argument with dict() or braces matters in set

In matplotlib home page, there is a link to a tutorial by Nicolas Rougier. In the section of the tutorial entitled "Devil is in the details", the script: http://www.loria.fr/~rougier/teaching/matplotlib/scripts/exercice_10.py produces the figure displayed on the web page. Line 48 of the script is: label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65 )) If we repla

用dict()或大括号指定字典参数

在matplotlib主页中,有一个由Nicolas Rougier编写的教程链接。 在题为“魔鬼在细节中”的教程部分,剧本: http://www.loria.fr/~rougier/teaching/matplotlib/scripts/exercice_10.py 产生显示在网页上的数字。 该脚本的第48行是: label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65 )) 如果我们通过以下方式替换此行 label.set_bbox({"facecolor": "white", "edgecolor": "None","alpha":0.65})

Getting output of pybrain prediction as array

I am making use of pybrain to build a network that has 6 input dimensions and one real valued output dimension. The code I use is shown below: network = buildNetwork(train.indim, 4, train.outdim) trainer = BackpropTrainer( network, train) trainer.trainOnDataset(train, 8000) print 'MSE train', trainer.testOnData(train, verbose = True) here train is of type Dataset I want to get the prediction

以数组形式获得pybrain预测的输出

我正在利用pybrain来构建一个具有6个输入维度和1个实际值输出维度的网络。 我使用的代码如下所示: network = buildNetwork(train.indim, 4, train.outdim) trainer = BackpropTrainer( network, train) trainer.trainOnDataset(train, 8000) print 'MSE train', trainer.testOnData(train, verbose = True) 这里火车是Dataset类型的,我想让trainer.testOnData()中的预测成为一个numpy数组。 我能够查看预测的结果以及

How do I get the row count of a Pandas dataframe?

I'm trying to get the number of rows of dataframe df with Pandas, and here is my code. Method 1: total_rows = df.count print total_rows +1 Method 2: total_rows = df['First_columnn_label'].count print total_rows +1 Both the code snippets give me this error: TypeError: unsupported operand type(s) for +: 'instancemethod' and 'int' What am I doing wrong? According to t

我如何获得熊猫数据框的行数?

我试图用Pandas得到dataframe df的行数,这里是我的代码。 方法1: total_rows = df.count print total_rows +1 方法2: total_rows = df['First_columnn_label'].count print total_rows +1 这两个代码片段都给我这个错误: TypeError:不支持的操作数类型为+:'instancemethod'和'int' 我究竟做错了什么? 根据@root给出的答案,检查df长度的最佳(最快)方式是调用: df.shape[0] 您可以使用.s

Change data type of columns in Pandas

I want to convert a table, represented as a list of lists, into a Pandas DataFrame. As an extremely simplified example: a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']] df = pd.DataFrame(a) What is the best way to convert the columns to the appropriate types, in this case columns 2 and 3 into floats? Is there a way to specify the types while converting to DataFrame? Or is it b

更改Pandas中列的数据类型

我想将一个表格(表示为列表清单)转换为Pandas DataFrame。 作为一个非常简单的例子: a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']] df = pd.DataFrame(a) 将列转换为适当类型的最佳方式是什么?在这种情况下,第2列和第3列转换为浮点型? 有没有办法在转换为DataFrame时指定类型? 或者先创建DataFrame然后循环遍历列来更改每列的类型会更好吗? 理想情况下,我希望以动态的方式进行此操作,因为可

Set value for particular cell in pandas DataFrame using index

I've created a pandas DataFrame df=DataFrame(index=['A','B','C'], columns=['x','y']) and got this x y A NaN NaN B NaN NaN C NaN NaN Then I want to assign value to particular cell, for example for row 'C' and column 'x'. I've expected to get such result: x y A NaN NaN B NaN NaN C 10 NaN with this code: df.xs('C')['x']=10 but contents of

使用索引为pandas DataFrame中的特定单元格设置值

我创建了一个熊猫DataFrame df=DataFrame(index=['A','B','C'], columns=['x','y']) 并得到这个 x y A NaN NaN B NaN NaN C NaN NaN 然后,我想为特定的单元格赋值,例如行'C'和列'x'。 我期望得到这样的结果: x y A NaN NaN B NaN NaN C 10 NaN 与此代码: df.xs('C')['x']=10 但df的内容没有改变。 在数据框中,它只是楠。 有什么建议么? RukTech的答案是df.set_

Creating an empty Pandas DataFrame, then filling it?

I'm starting from the pandas Data Frame docs here: http://pandas.pydata.org/pandas-docs/stable/dsintro.html I'd like to iteratively fill the Data Frame with values in a time series kind of calculation. So basically, I'd like to initialize, data frame with columns A,B and timestamp rows, all 0 or all NaN. I'd then add initial values and go over this data calculating the new ro

创建一个空的Pandas DataFrame,然后填充它?

我从这里的熊猫数据框文档开始:http://pandas.pydata.org/pandas-docs/stable/dsintro.html 我想用时间序列类型的计算迭代地填充数据框。 所以基本上,我想初始化数据框,列A,B和时间戳记行,全部为0或全部NaN。 然后,我会添加初始值,然后查看这个数据计算行之前的新行,比如行[A] [t] =行[A] [t-1] +1左右。 我目前使用的代码如下,但我觉得它有点难看,并且必须有一种方法可以直接或通过一种更好的方式直接使用数据

add one row in a pandas.DataFrame

I understand that pandas is designed to load fully populated DataFrame but I need to create an empty DataFrame then add rows, one by one . What is the best way to do this ? I successfully created an empty DataFrame with : res = DataFrame(columns=('lib', 'qty1', 'qty2')) Then I can add a new row and fill a field with : res = res.set_value(len(res), 'qty1', 10.0) It works but seems very odd

在pandas.DataFrame中添加一行

我明白,熊猫被设计为加载完全填充的DataFrame但我需要创建一个空的DataFrame,然后逐个添加行 。 做这个的最好方式是什么 ? 我成功地创建了一个空的DataFrame: res = DataFrame(columns=('lib', 'qty1', 'qty2')) 然后我可以添加一个新行并填写一个字段: res = res.set_value(len(res), 'qty1', 10.0) 它的工作,但似乎很奇怪: - /(它添加字符串值失败) 我如何添加一个新的行到我的DataFrame(使用不同的列类型

What is the most efficient way to loop through dataframes with pandas?

I want to perform my own complex operations on financial data in dataframes in a sequential manner. For example I am using the following MSFT CSV file taken from Yahoo Finance: Date,Open,High,Low,Close,Volume,Adj Close 2011-10-19,27.37,27.47,27.01,27.13,42880000,27.13 2011-10-18,26.94,27.40,26.80,27.31,52487900,27.31 2011-10-17,27.11,27.42,26.85,26.98,39433400,26.98 2011-10-14,27.31,27.50,27.0

用熊猫循环数据框的最有效方式是什么?

我想以顺序的方式对数据框中的财务数据执行我自己的复杂操作。 例如,我正在使用以下来自雅虎财经的MSFT CSV文件: Date,Open,High,Low,Close,Volume,Adj Close 2011-10-19,27.37,27.47,27.01,27.13,42880000,27.13 2011-10-18,26.94,27.40,26.80,27.31,52487900,27.31 2011-10-17,27.11,27.42,26.85,26.98,39433400,26.98 2011-10-14,27.31,27.50,27.02,27.27,50947700,27.27 .... 然后我执行以下操作: #!/usr/bin/env py