When using django, compressor, and clevercss, I set my css url to an absolute path. Clevercss is then passed the path of the .ccss file without the COMPRESS_ROOT prefixed (the absolute path). When I set my css url to a relative path, clevercss processes the ccss files, but the browser then correctly looks for relatively placed css files (eg mywebsite.com/profile/user/1/css/stylesheet.css) Com
当使用django,压缩器和clevercss时,我将我的css url设置为绝对路径。 然后,Clevercss将传递.ccss文件的路径,而不需要COMPRESS_ROOT前缀(绝对路径)。 当我将我的css url设置为相对路径时,clevercss处理ccss文件,但浏览器然后正确地查找相对放置的css文件(例如mywebsite.com/profile/user/1/css/stylesheet.css) 但是,Compressor会在css链接是相对url时使用MEDIA_ROOT,但在使用绝对url时不会使用MEDIA_ROOT。 这
Having no Python or Qt experience I'd like to get started with the recent versions (I actually seek to make heavy use of some of the new features announced) but I couldn't find any tutorials (the most seem to use Python 2.x and Qt 4). Could you please share a link to a tutorial or just tell me what exactly do I need to started? I have reasonable experience with other languages and am no
没有Python或Qt经验我想开始使用最新版本(我实际上试图大量使用已公布的一些新功能),但我找不到任何教程(大多数似乎使用Python 2。 x和Qt 4)。 你能请分享一个教程的链接,或者告诉我究竟我需要开始什么? 我对其他语言有合理的经验,在这个问题中我没有问及学习Python本身的问题。 看看PyQt。 这里是Qt5文档。 当我需要PyQt的帮助时,我会查看Qt文档并将C ++代码“翻译”为Python。
In matplotlib home page, there is a link to a tutorial by Nicolas Rougier. In the section of the tutorial entitled "Devil is in the details", the script: http://www.loria.fr/~rougier/teaching/matplotlib/scripts/exercice_10.py produces the figure displayed on the web page. Line 48 of the script is: label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65 )) If we repla
在matplotlib主页中,有一个由Nicolas Rougier编写的教程链接。 在题为“魔鬼在细节中”的教程部分,剧本: http://www.loria.fr/~rougier/teaching/matplotlib/scripts/exercice_10.py 产生显示在网页上的数字。 该脚本的第48行是: label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65 )) 如果我们通过以下方式替换此行 label.set_bbox({"facecolor": "white", "edgecolor": "None","alpha":0.65})
I am making use of pybrain to build a network that has 6 input dimensions and one real valued output dimension. The code I use is shown below: network = buildNetwork(train.indim, 4, train.outdim) trainer = BackpropTrainer( network, train) trainer.trainOnDataset(train, 8000) print 'MSE train', trainer.testOnData(train, verbose = True) here train is of type Dataset I want to get the prediction
我正在利用pybrain来构建一个具有6个输入维度和1个实际值输出维度的网络。 我使用的代码如下所示: network = buildNetwork(train.indim, 4, train.outdim) trainer = BackpropTrainer( network, train) trainer.trainOnDataset(train, 8000) print 'MSE train', trainer.testOnData(train, verbose = True) 这里火车是Dataset类型的,我想让trainer.testOnData()中的预测成为一个numpy数组。 我能够查看预测的结果以及
I'm trying to get the number of rows of dataframe df with Pandas, and here is my code. Method 1: total_rows = df.count print total_rows +1 Method 2: total_rows = df['First_columnn_label'].count print total_rows +1 Both the code snippets give me this error: TypeError: unsupported operand type(s) for +: 'instancemethod' and 'int' What am I doing wrong? According to t
我试图用Pandas得到dataframe df的行数,这里是我的代码。 方法1: total_rows = df.count print total_rows +1 方法2: total_rows = df['First_columnn_label'].count print total_rows +1 这两个代码片段都给我这个错误: TypeError:不支持的操作数类型为+:'instancemethod'和'int' 我究竟做错了什么? 根据@root给出的答案,检查df长度的最佳(最快)方式是调用: df.shape[0] 您可以使用.s
I want to convert a table, represented as a list of lists, into a Pandas DataFrame. As an extremely simplified example: a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']] df = pd.DataFrame(a) What is the best way to convert the columns to the appropriate types, in this case columns 2 and 3 into floats? Is there a way to specify the types while converting to DataFrame? Or is it b
我想将一个表格(表示为列表清单)转换为Pandas DataFrame。 作为一个非常简单的例子: a = [['a', '1.2', '4.2'], ['b', '70', '0.03'], ['x', '5', '0']] df = pd.DataFrame(a) 将列转换为适当类型的最佳方式是什么?在这种情况下,第2列和第3列转换为浮点型? 有没有办法在转换为DataFrame时指定类型? 或者先创建DataFrame然后循环遍历列来更改每列的类型会更好吗? 理想情况下,我希望以动态的方式进行此操作,因为可
I've created a pandas DataFrame df=DataFrame(index=['A','B','C'], columns=['x','y']) and got this x y A NaN NaN B NaN NaN C NaN NaN Then I want to assign value to particular cell, for example for row 'C' and column 'x'. I've expected to get such result: x y A NaN NaN B NaN NaN C 10 NaN with this code: df.xs('C')['x']=10 but contents of
我创建了一个熊猫DataFrame df=DataFrame(index=['A','B','C'], columns=['x','y']) 并得到这个 x y A NaN NaN B NaN NaN C NaN NaN 然后,我想为特定的单元格赋值,例如行'C'和列'x'。 我期望得到这样的结果: x y A NaN NaN B NaN NaN C 10 NaN 与此代码: df.xs('C')['x']=10 但df的内容没有改变。 在数据框中,它只是楠。 有什么建议么? RukTech的答案是df.set_
I'm starting from the pandas Data Frame docs here: http://pandas.pydata.org/pandas-docs/stable/dsintro.html I'd like to iteratively fill the Data Frame with values in a time series kind of calculation. So basically, I'd like to initialize, data frame with columns A,B and timestamp rows, all 0 or all NaN. I'd then add initial values and go over this data calculating the new ro
我从这里的熊猫数据框文档开始:http://pandas.pydata.org/pandas-docs/stable/dsintro.html 我想用时间序列类型的计算迭代地填充数据框。 所以基本上,我想初始化数据框,列A,B和时间戳记行,全部为0或全部NaN。 然后,我会添加初始值,然后查看这个数据计算行之前的新行,比如行[A] [t] =行[A] [t-1] +1左右。 我目前使用的代码如下,但我觉得它有点难看,并且必须有一种方法可以直接或通过一种更好的方式直接使用数据
I understand that pandas is designed to load fully populated DataFrame but I need to create an empty DataFrame then add rows, one by one . What is the best way to do this ? I successfully created an empty DataFrame with : res = DataFrame(columns=('lib', 'qty1', 'qty2')) Then I can add a new row and fill a field with : res = res.set_value(len(res), 'qty1', 10.0) It works but seems very odd
我明白,熊猫被设计为加载完全填充的DataFrame但我需要创建一个空的DataFrame,然后逐个添加行 。 做这个的最好方式是什么 ? 我成功地创建了一个空的DataFrame: res = DataFrame(columns=('lib', 'qty1', 'qty2')) 然后我可以添加一个新行并填写一个字段: res = res.set_value(len(res), 'qty1', 10.0) 它的工作,但似乎很奇怪: - /(它添加字符串值失败) 我如何添加一个新的行到我的DataFrame(使用不同的列类型
I want to perform my own complex operations on financial data in dataframes in a sequential manner. For example I am using the following MSFT CSV file taken from Yahoo Finance: Date,Open,High,Low,Close,Volume,Adj Close 2011-10-19,27.37,27.47,27.01,27.13,42880000,27.13 2011-10-18,26.94,27.40,26.80,27.31,52487900,27.31 2011-10-17,27.11,27.42,26.85,26.98,39433400,26.98 2011-10-14,27.31,27.50,27.0
我想以顺序的方式对数据框中的财务数据执行我自己的复杂操作。 例如,我正在使用以下来自雅虎财经的MSFT CSV文件: Date,Open,High,Low,Close,Volume,Adj Close 2011-10-19,27.37,27.47,27.01,27.13,42880000,27.13 2011-10-18,26.94,27.40,26.80,27.31,52487900,27.31 2011-10-17,27.11,27.42,26.85,26.98,39433400,26.98 2011-10-14,27.31,27.50,27.02,27.27,50947700,27.27 .... 然后我执行以下操作: #!/usr/bin/env py