I fail to find an easy-to-use function in any Python library (preferrably PIL) for conversion from RGB to YUV. Since I have to convert many images, I don't want to implement it myself (would be expensive without LUTs and so on). When I do the intuitive: from PIL import Image img = Image.open('test.jpeg') img_yuv = img.convert('YUV') I get an error: ValueError: conversion from RGB to YUV
我无法在任何Python库(最好是PIL)中找到从RGB到YUV转换的易用功能。 由于我必须转换许多图像,我不想自己实现它(如果没有LUT等,将会很昂贵)。 当我做直观的时候: from PIL import Image img = Image.open('test.jpeg') img_yuv = img.convert('YUV') 我收到一个错误: ValueError: conversion from RGB to YUV not supported 你知道这是为什么吗? 有没有在Python中甚至PIL有效的实现? 我不是计算机视觉专家,
How do I add RDF text that has been assigned to a variable (this text has also been validated and is correct RDF) to a graph in RDFlib? I have a variable assigned to a bunch of text in RDf format like below: block = '''<?xml version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:lem="http://www.example.eu/lem#" xmlns:lexinfo="http://www.sample.net/2.0/i
如何将已分配给变量的RDF文本(此文本已被验证并且是正确的RDF)添加到RDFlib中的图表中? 我有一个变量分配给一堆RDf格式的文本,如下所示: block = '''<?xml version="1.0"?> <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:lem="http://www.example.eu/lem#" xmlns:lexinfo="http://www.sample.net/2.0/info#"> <lem:Lexicon rdf:about="http://myserver/myns#lex"> ....
I am trying to parse a rather large NTriples file using the code from Parse large RDF in Python I installed raptor and the redland-bindings for python. import RDF parser=RDF.Parser(name="ntriples") #as name for parser you can use ntriples, turtle, rdfxml, ... model=RDF.Model() stream=parser.parse_into_model(model,"file:./mybigfile.nt") for triple in model: print triple.subject, triple.pred
我正尝试使用解析Python中的大型RDF的代码解析一个相当大的NTriples文件 我安装了猛禽和Python的红土绑定。 import RDF parser=RDF.Parser(name="ntriples") #as name for parser you can use ntriples, turtle, rdfxml, ... model=RDF.Model() stream=parser.parse_into_model(model,"file:./mybigfile.nt") for triple in model: print triple.subject, triple.predicate, triple.object 然而,程序挂起,我怀疑它试图
I'd like to know the best way to read a disconected undirected graph using igraph for python. For instance, if I have the simple graph in which 0 is linked to 1 and 2 is a node not connected to any other. I couldn't get igraph to read it from a edgelist format(Graph.Read_Edgelist(...)), because every line must be an edge, so the following is not allowed: 0 1 2 I've been just wonde
我想知道使用igraph for python读取disconected无向图的最佳方法。 例如,如果我有一个简单的图表,其中0链接到1,而2是一个没有连接到任何其他节点的节点。 我无法让igraph从边缘列表格式(Graph.Read_Edgelist(...))读取它,因为每条线都必须是边缘,所以不允许使用以下内容: 0 1 2 我一直在想,在这种情况下,邻接矩阵是否是我唯一的/最好的选择(我可以通过这种表示方式来实现它)? 我宁愿有一种格式可以通过查看
I want to create a .rdf file containing data in the form of SKOS model and written in RDF/XML format. I prefer using Python language. Can you suggest any good python libraries? If possible, a simple example would be of great help. thanks Have a look at RDFLib: RDFLib is a Python library for working with RDF, a simple yet powerful language for representing information. The library contai
我想创建一个包含SKOS模型形式的数据的.rdf文件,并以RDF / XML格式编写。 我更喜欢使用Python语言。 你能建议任何好的Python库吗? 如果可能的话,一个简单的例子会有很大的帮助。 谢谢 看看RDFLib: RDFLib是一个用于处理RDF的Python库,RDF是一种用于表示信息的简单而强大的语言。 该库包含用于RDF / XML,N3,NTriples,Turtle,TriX和RDFa的解析器和序列化器。 该库提供了一个Graph接口,可以由多种商店实现中的
RDF is a schema-free system to represent data. However, most of the time I find myself writing a sort of well-known graph structure, and I have to build triple by triple. In the more general case, this well known graph structure is of course not guaranteed to be complete nor fixed (eg something else can be added). However, if a more or less invariant backbone exists, it would be nice to descri
RDF是一种表示数据的无模式系统。 然而,大多数时候,我发现自己正在编写一种众所周知的图形结构,而且我必须构建三倍三倍的图形结构。 在更一般的情况下,这种众所周知的图形结构当然不保证是完整的也不是固定的(例如可以添加其他东西)。 但是,如果存在一个或多或少不变的主干,那么使用占位符描述此主干并传递上下文以生成完全部署的RDF图将会很好。 在Python中是否存在这样的事情? 听起来有点像使用SPARQL CONSTRU
In Python's documentation, on the __getattr__ function it says: Note that if the attribute is found through the normal mechanism, __getattr__() is not called. (This is an intentional asymmetry between __getattr__() and __setattr__().) This is done both for efficiency reasons and because otherwise __getattr__() would have no way to access other attributes of the instance. I have a problem
在Python的文档中,在__getattr__函数中它说: 请注意,如果通过正常机制找到该属性,则不会调用__getattr __()。 (这是__getattr __()和__setattr __()之间的故意不对称)。这是出于效率原因,否则__getattr __()将无法访问实例的其他属性。 我在理解上一个陈述时遇到了一个问题: 将无法访问实例的其他属性 如何无法访问其他属性? (我猜它与无限递归有关,但是不存在其他方法来访问实例属性,例如来自sel
I am trying to parse sitemap.xml files using scrapy, the sitemap files are like the following one with just much more url nodes. <?xml version="1.0" encoding="UTF-8"?> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:video="http://www.sitemaps.org/schemas/sitemap-video/1.1"> <url> <loc> http://www.site.com/page.html
我正在尝试使用scrapy解析sitemap.xml文件,这些站点地图文件就像下面这些url节点一样。 <?xml version="1.0" encoding="UTF-8"?> <urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9" xmlns:video="http://www.sitemaps.org/schemas/sitemap-video/1.1"> <url> <loc> http://www.site.com/page.html </loc> <video:video>
I am trying to code a simple A* solver in Python for a simple 8-Puzzle game. I have represented the goal of my game in this way: goal = [[1, 2, 3], [8, 0, 4], [7, 6, 5]] My problem is that I don't know how to write a simple Manhattan Distance heuristic for my goal. I know it should be defined as the sum of the distances between a generic state and my goal state. I think
我正在尝试在Python中为一个简单的8-Puzzle游戏编写一个简单的A *求解器。 我用这种方式代表了我的比赛的目标: goal = [[1, 2, 3], [8, 0, 4], [7, 6, 5]] 我的问题是,我不知道如何为我的目标写一个简单的曼哈顿距离启发式。 我知道它应该被定义为一个通用状态和我的目标状态之间的距离的总和。 我想我应该编写如下代码: def manhattan_distance(state): distance = 0 for x in xrange(3):
哪些是将PDF文件转换为文本的最佳Python模块? Try PDFMiner. It can extract text from PDF files as HTML, SGML or "Tagged PDF" format. http://www.unixuser.org/~euske/python/pdfminer/index.html The Tagged PDF format seems to be the cleanest, and stripping out the XML tags leaves just the bare text. A Python 3 version is available under: https://github.com/pdfminer/pdfminer.six The
哪些是将PDF文件转换为文本的最佳Python模块? 试试PDFMiner。 它可以从PDF文件中提取HTML,SGML或“Tagged PDF”格式的文本。 http://www.unixuser.org/~euske/python/pdfminer/index.html 标记PDF格式似乎是最干净的,并且剥离出XML标签只剩下裸露的文本。 Python 3版本可在以下位置获得: https://github.com/pdfminer/pdfminer.six 自发布codeape后,PDFMiner软件包已更改。 编辑(再次): PDFMiner已在201002