I'm looking at the article C# - Data Transfer Object on serializable DTOs. The article includes this piece of code: public static string SerializeDTO(DTO dto) { try { XmlSerializer xmlSer = new XmlSerializer(dto.GetType()); StringWriter sWriter = new StringWriter(); xmlSer.Serialize(sWriter, dto); return sWriter.ToString(); } catch(Exception ex)
我正在查看可串行化DTO上的文章C# - 数据传输对象。 文章包含这段代码: public static string SerializeDTO(DTO dto) { try { XmlSerializer xmlSer = new XmlSerializer(dto.GetType()); StringWriter sWriter = new StringWriter(); xmlSer.Serialize(sWriter, dto); return sWriter.ToString(); } catch(Exception ex) { throw ex; } } 本文的其余部分看起来
Possible Duplicate: When is it best to use a Stack instead of a Heap and vice versa? I've read a few of the other questions regarding the heap vs stack, but they seem to focus more on what the heap/stack do rather than why you would use them. It seems to me that stack allocation would almost always be preferred since it is quicker (just moving the stack pointer vs looking for free space
可能重复: 什么时候最好使用栈而不是堆,反之亦然? 我已经阅读了关于堆vs堆的其他一些问题,但他们似乎更关注堆/堆的作用,而不是为什么要使用它们。 在我看来,堆栈分配几乎总是首选,因为它更快(只需移动堆栈指针与在堆中寻找空闲空间),并且在完成使用时不必手动释放分配的内存。 我可以看到使用堆分配的唯一原因是如果你想在一个函数中创建一个对象,然后在该函数范围外使用它,因为从函数返回后,堆栈分配的内存
I want to create a program that will simulate an out-of-memory (OOM) situation on a Unix server. I created this super-simple memory eater: #include <stdio.h> #include <stdlib.h> unsigned long long memory_to_eat = 1024 * 50000; size_t eaten_memory = 0; void *memory = NULL; int eat_kilobyte() { memory = realloc(memory, (eaten_memory * 1024) + 1024); if (memory == NULL) {
我想创建一个程序来模拟Unix服务器上的内存不足(OOM)情况。 我创造了这个超级简单的记忆食器: #include <stdio.h> #include <stdlib.h> unsigned long long memory_to_eat = 1024 * 50000; size_t eaten_memory = 0; void *memory = NULL; int eat_kilobyte() { memory = realloc(memory, (eaten_memory * 1024) + 1024); if (memory == NULL) { // realloc failed here - we probably ca
I do have different images which all have some kind of border around the "real" image. What I would like to achieve is to find the "real" image (size and location in pixels). For me the challenge is that the border is not always black (can be any kind of black or grey with a lot of noise) and the "real" image (water with shark in this example) can have any combina
我确实有不同的图像,这些图像在“真实”图像周围都有某种边界。 我想实现的是找到“真实”的图像(像素大小和位置)。 对我来说,挑战在于边框不总是黑色的(可以是任何种类的黑色或灰色,有很多噪音),“真实”的图像(在这个例子中有鲨鱼的水)可以有颜色,饱和度, ... 现在通常我知道Canny,Blob检测,hough线等算法,但我刚开始使用它们。 到目前为止,我设法找到了特定图像的边框,但只要我尝试将相同的算法和参数应用于
I've been looking for any updates regarding the robust Predator tracking algorithm that trains itself over time automatically for those who are unfamiliar you can check this I'm not sure if anyone was able to port it on C# since he originally developed it on matlab here's the latest thing I came up to TLD in OpenCV I'm looking for a C# port if anybody successfully made it
我一直在寻找有关强大的Predator跟踪算法的更新,这些算法可以自动随着时间的推移自我训练 对于那些不熟悉的人,你可以检查一下 我不确定是否有人能够在C#上移植它,因为他最初是在matlab上开发它的 这是我在OpenCV中获得顶级域名(TLD)的最新信息 如果有人成功地实现了它,我正在寻找一个C#端口 提前致谢!
I am a bit new to these two methods of copying one object into the other. I am confused and unable to spot out the major difference between deep copy and shallow copy.. I had gone through a lots of theory regarding this, but I need explanation with proper examples.. I have program in which I copy one object into another. --> class A { public int a = 0; public void dis
对于将一个对象复制到另一个中的这两种方法,我有点新意。 我很困惑,无法发现深拷贝和浅拷贝之间的主要区别..我已经通过了很多关于这个的理论,但是我需要用适当的例子来解释..我有一个程序,我将一个对象拷贝到另一个。 - > class A { public int a = 0; public void display() { Console.WriteLine("The value of a is " + a); } } class Program {
I'm new in the use of asynchronous methods in C#. I have read that these keywords async and await help to make the program more responsive by asynchronizing some methods. I have this snippet : First Way public static void Main() { Console.WriteLine("Hello!! welcome to task application"); Console.ReadKey(); Task<string> ourtask = Task.Factory.StartNew
我是在C#中使用异步方法的新手。 我已经读过这些关键字async并await帮助,通过不同步某些方法来提高程序的响应速度。 我有这个片段: 第一条路 public static void Main() { Console.WriteLine("Hello!! welcome to task application"); Console.ReadKey(); Task<string> ourtask = Task.Factory.StartNew<string>(() => { return "Good Job";
I'm watching this Introduction to OpenMP series of videos, and the presenter keeps repeating that "heap is shared, stack is private". It is also mentioned that data and text areas are shared. However he gives examples where stack variables of the parent thread are obviously shared and he keeps referring to those variables as being "on the heap". Here's an example:
我正在观看OpenMP系列视频简介,并且演示者不断重复“堆是共享的,堆栈是私有的”。 还提到数据和文本区域是共享的。 然而,他举例说明了父线程的堆栈变量显然是共享的,他一直将这些变量称为“在堆上”。 这是一个例子: https://youtu.be/dlrbD0mMMcQ?t=2m57s 他声称变量index和count是“堆在一起”。 不是在父线程的堆栈上index ? count一个静态变量,所以是数据区域的一部分? 在我自己的OMP程序中,如果我打印这些变量
I'm developing a multi-threaded application in C. I'm currently playing with 40 threads and each uses an array of around 2Mb. I'm currently allocating this array dynamically, so I do: char *data = malloc(2097152 * sizeof(char)); These threads are serving requests, so this array is constantly allocated and free'd, each time a new request comes in. All is working fine, but I
我正在用C语言开发一个多线程应用程序。我目前正在玩40个线程,每个线程都使用大约2Mb的数组。 我目前正在动态分配这个数组,所以我这样做: char *data = malloc(2097152 * sizeof(char)); 这些线程正在处理请求,因此每次有新的请求进入时,此数组都会不断分配和释放。 所有工作正常,但我使用valgrind的地块工具,它显示我有时有80Mb的堆。 所以我有点想知道,我会有堆碎片问题吗? 我还在我的代码的其他地方分配了更
I'm working in C with openMP using gcc on a linux machine. In an openmp parallel for loop, I can declare a statically allocated array as private. Consider the code fragment: int a[10]; #pragma omp parallel for shared(none) firstprivate(a) for(i=0;i<4;i++){ And everything works as expected. But if instead I allocate a dynamically, int * a = (int *) malloc(10*sizeof(int)); #pragma omp
我在C上使用gcc在linux机器上使用openMP工作。 在openmp并行for循环中,我可以声明静态分配的数组为private。 考虑一下代码片段: int a[10]; #pragma omp parallel for shared(none) firstprivate(a) for(i=0;i<4;i++){ 一切都按预期工作。 但是如果我动态地分配, int * a = (int *) malloc(10*sizeof(int)); #pragma omp parallel for shared(none) firstprivate(a) a(至少a [1 ... 9])的值不受保护,但表现得好