Pretty much I need to write a program to check if a list has any duplicates and if it does it removes them and returns a new list with the items that werent duplicated/removed. This is what I have but to be honest I do not know what to do. def remove_duplicates(): t = ['a', 'b', 'c', 'd'] t2 = ['a', 'c', 'd'] for t in t2: t.append(t.remove()) return t The common approac
几乎我需要编写一个程序来检查一个列表是否有任何重复项,如果有,它将删除它们,并返回一个新的列表以及不重复的项目。 这是我所拥有的,但说实话我不知道该怎么办。 def remove_duplicates(): t = ['a', 'b', 'c', 'd'] t2 = ['a', 'c', 'd'] for t in t2: t.append(t.remove()) return t 获得独特物品集合的常用方法是使用一set物品。 集合是不同对象的无序集合。 要从任何迭代中创建一个集合,
I'm running apache2 server. CGIHTTPServer is running in directory /mnt/hgfs/wind/BTech_BTP/BTP/code/final_code/ . I'm using the url http://localhost:8000/test/www/adder.html . I have three file in ../final_code/test/www directory. adder.html contains: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <title>Adder</title&g
我正在运行apache2服务器。 CGIHTTPServer正在目录/ mnt / hgfs / wind / BTech_BTP / BTP / code / final_code /中运行 。 我使用url http:// localhost:8000 / test / www / adder.html 。 ../final_code/test/www目录中有三个文件。 adder.html包含: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <head> <title>Adder</title> </head> &
Context : I have Flask routes defined for different API endpoints and each endpoint calls a controller class with certain parameters (uid, project_id, etc.). @app.route('/sample/route', methods=['POST']) @require_json_payload @require_fields({ 'pid', 'params' }) def route_handler(arg1, arg2): #input filtering ... try: proj_cntr.sample_method( pid
上下文 :我为不同的API端点定义了Flask路由,每个端点使用特定参数(uid,project_id等)调用控制器类。 @app.route('/sample/route', methods=['POST']) @require_json_payload @require_fields({ 'pid', 'params' }) def route_handler(arg1, arg2): #input filtering ... try: proj_cntr.sample_method( pid = pid, ... = ... ) except P
I need to create permutations of all the strings in a list. My list can grow to be 300+ items long, so I began to look for ways to optimize the permutations function from itertools . Unfortunately, the length of the list is a must-have. Shrinking it is possible, but for my purpose, the longer the list, the better. I understand just how many permutations are possible and that the number grow
我需要创建列表中所有字符串的排列。 我的列表可以增长到300多个项目,所以我开始寻找方法来优化itertools的permutations函数。 不幸的是,列表的长度是必须的。 收缩是可能的,但为了我的目的,列表越长越好。 我明白有多少排列是可能的,并且数字根据排列长度呈指数增长 - 这对我的目的也是必不可少的。 到目前为止,我已经能够通过陪审组装一种方式来仅输出在特定长度范围内的排列: def bounded_permutations(iterab
Imagine some list L = [(1,2,3),(4,5,6),(7,8),(9,10),(11,12,13)] I want to iterate through all permutations of this list that fit an arbitrary length key such as (2,2,3,3,3) . So in this case, all permutations where the length of the elements fits that key. [(7,8),(9,10),(1,2,3),(4,5,6),(11,12,13)] [(9,10),(7,8),(1,2,3),(4,5,6),(11,12,13)] [(7,8),(9,10),(4,5,6),(1,2,3),(11,12,13)] etc. R
想象一下列表 L = [(1,2,3),(4,5,6),(7,8),(9,10),(11,12,13)] 我想遍历这个列表的所有排列,这些排列适合任意长度的关键字,如(2,2,3,3,3) 。 所以在这种情况下,元素的长度适合该键的所有排列。 [(7,8),(9,10),(1,2,3),(4,5,6),(11,12,13)] [(9,10),(7,8),(1,2,3),(4,5,6),(11,12,13)] [(7,8),(9,10),(4,5,6),(1,2,3),(11,12,13)] 等等 现在,我只是遍历所有的排列组合,只是采用适合关键字的排列,但是这经历了很多
Was just wondering what's the most efficient way of generating all the cyclic permutations of a list in Python. In either direction. For example, given a list [1, 2, 3, 4] , I want to generate either: [[1, 2, 3, 4], [4, 1, 2, 3], [3, 4, 1, 2], [2, 3, 4, 1]] where the next permutation is generated by moving the last element to the front, or: [[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2],
只是想知道在Python中生成列表的所有循环变换的最有效方式。 在任何一个方向。 例如,给出一个列表[1, 2, 3, 4] ,我想要生成: [[1, 2, 3, 4], [4, 1, 2, 3], [3, 4, 1, 2], [2, 3, 4, 1]] 通过将最后一个元素移动到前面来生成下一个排列,或者: [[1, 2, 3, 4], [2, 3, 4, 1], [3, 4, 1, 2], [4, 1, 2, 3]] 通过将第一个元素移到后面生成下一个排列。 第二种情况对我来说稍微有趣一些,因为它导致拉丁方减小(第
How do you generate all the permutations of a list in Python, independently of the type of elements in that list? For example: permutations([]) [] permutations([1]) [1] permutations([1, 2]) [1, 2] [2, 1] permutations([1, 2, 3]) [1, 2, 3] [1, 3, 2] [2, 1, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1] Starting with Python 2.6 (and if you're on Python 3) you have a standard-library tool for this: iter
如何在Python中生成列表的所有排列,而与列表中元素的类型无关? 例如: permutations([]) [] permutations([1]) [1] permutations([1, 2]) [1, 2] [2, 1] permutations([1, 2, 3]) [1, 2, 3] [1, 3, 2] [2, 1, 3] [2, 3, 1] [3, 1, 2] [3, 2, 1] 从Python 2.6开始 (如果你使用Python 3),你可以使用标准库工具: itertools.permutations 。 import itertools list(itertools.permutations([1, 2, 3])) 如果您使用较
I am trying to augment an existing python source with a cython .pxd , as Stefan Behnel illustrates in slides 32 to 35 of "Using the Cython Compiler to write fast Python code". As part of the exercise, I keep hitting a wall with the __eq__() method in my metaclass. I wish I could choose a simpler case to start Cython, but my production code isn't that simple. I cooked up a "
我正在尝试用cython .pxd扩充现有的python源.pxd ,正如Stefan Behnel在“使用Cython编译器编写快速Python代码”幻灯片32到35中所说明的那样。 作为练习的一部分,我使用元类中的__eq__()方法继续打墙。 我希望我可以选择一个更简单的例子来启动Cython,但是我的生产代码并不那么简单。 我制作了一个“最小的完整示例”来说明问题......查看问题底部的代码。 短篇故事... 如果我使用cdef inline __richcmp__(Japan_Car_ABC s
我可以在不生成编译后的.pyc文件的情况下运行python解释器吗? From "What's New in Python 2.6 - Interpreter Changes": Python can now be prevented from writing .pyc or .pyo files by supplying the -B switch to the Python interpreter, or by setting the PYTHONDONTWRITEBYTECODE environment variable before running the interpreter. This setting is available to Python programs as the sys.don
我可以在不生成编译后的.pyc文件的情况下运行python解释器吗? 从“Python 2.6的新增功能 - 解释器更改”开始: 通过将-B开关提供给Python解释器,或者在运行解释器之前设置PYTHONDONTWRITEBYTECODE环境变量,现在可以防止Python编写.pyc或.pyo文件。 该设置可作为sys.dont_write_bytecode变量提供给Python程序,Python代码可以更改该值以修改解释器的行为。 更新2010-11-27:Python 3.2通过引入特殊的__pycache__子文件夹来
I'm currently porting a code base, I initially implemented in Perl, to Python. The following short piece of code takes up about 90% of the significant runtime when I run on the whole dataset. def equate(): for i in range(row): for j in range(row): if adj_matrix[i][j] != adj_matrix[mapping[i]][mapping[j]]: return False return
我目前正在将一个代码库移植到Python中,我最初是用Perl实现的。 当我在整个数据集上运行时,以下一小段代码占用了大约90%的重要运行时间。 def equate(): for i in range(row): for j in range(row): if adj_matrix[i][j] != adj_matrix[mapping[i]][mapping[j]]: return False return True 其中equate是另一种方法中的闭包,row是整数,adj_matrix是表