How to use Socket address more than once on windows

this same question has been asked several times, and most answers where related to TCP/IP . But im looking for Bluetooth related. Im trying to send information between 2 machines through bluetooth. I installed pybluez on both linux and windows, It worked fine on discovering other nearby devices on both Os. Later i used this code as an example to send information. It worked fine when, client

如何在Windows上多次使用Socket地址

这个同样的问题已经被多次提出,并且大部分答案都与TCP/IP 。 但即时通讯寻找Bluetooth相关。 我试图通过蓝牙在两台机器之间发送信息。 我在linux和windows上都安装了pybluez ,它在两个Os上发现其他附近设备时工作得很好。 后来我用这个代码作为例子发送信息。 它工作得很好,当客户端是Linux机器和服务器是Linux机器。 当我在Windows7上运行服务器端代码时,我得到了错误 server_sock.bind(("",port)) File "C:Python

How python calculate this modulo?

python如何以数学方式计算这个模数? >>>-1%10 9 The Wikipedia article on the modulo operation provides the following constraint for a % q : a = nq + r Substituting a = -1 , q = 10 and r = 9 , we see that n must be equal -1. Plugging in -1 for n: -1 % 10 # Python evaluates this as 9 -1 = n * 10 + r -1 = -1 * 10 + r 9 = r Testing with another example (again plugging in -1 for n):

python如何计算这个模数?

python如何以数学方式计算这个模数? >>>-1%10 9 关于模运算的维基百科文章为a % q提供了以下约束条件: a = nq + r 代入a = -1 , q = 10和r = 9 ,我们看到n必须等于-1。 在n中插入-1: -1 % 10 # Python evaluates this as 9 -1 = n * 10 + r -1 = -1 * 10 + r 9 = r 用另一个例子进行测试(对于n再次插入-1): -7 % 17 # Python evaluates this as 10 -7 = n * 17 + r -7 = -17 + r 10 = r 分子为正

how do I compute a weighted moving average using pandas

Using pandas I can compute simple moving average SMA using pandas.stats.moments.rolling_mean exponential moving average EMA using pandas.stats.moments.ewma But how do I compute a weighted moving average (WMA) as described in wikipedia http://en.wikipedia.org/wiki/Exponential_smoothing ... using pandas? Is there a pandas function to compute a WMA? No, there is no implementation of that e

我如何使用熊猫来计算加权移动平均数

使用我可以计算的熊猫 简单移动平均SMA使用pandas.stats.moments.rolling_mean 指数移动平均EMA使用pandas.stats.moments.ewma 但是,如何计算维基百科http://en.wikipedia.org/wiki/Exponential_smoothing中描述的使用熊猫的加权移动平均值(WMA)? 是否有熊猫功能来计算WMA? 不,没有具体算法的实现。 在这里创建一个关于它的GitHub问题: https://github.com/pydata/pandas/issues/886 我很乐意为此采取拉取

Use blocks from included files for parent in jinja2

I'm not sure if what I want to do is possible: I'm trying to get a block in a parent template to be filled out by a file included in a child template of the parent. The best way to explain this is a test case: File t1.djhtml : <root> <block t3_container> {% block t3 %}This should be 'CONTENT'{% endblock %} </block t3_container> <block t2_cont

在jinja2中为包含父文件的文件使用块

我不确定我想要做什么是可能的:我试图让父模板中的块被包含在父模板中的文件填充。 解释这个最好的方法是一个测试用例: 文件t1.djhtml : <root> <block t3_container> {% block t3 %}This should be 'CONTENT'{% endblock %} </block t3_container> <block t2_container> {% block t2 %}{% endblock %} </block t2_container> </root> 文件t2.djhtml

Is there a Python equivalent of the C# null

In C# there's a null-coalescing operator (written as ?? ) that allows for easy (short) null checking during assignment: string s = null; var other = s ?? "some default value"; Is there a python equivalent? I know that I can do: s = None other = s if s else "some default value" But is there an even shorter way (where I don't need to repeat s )? other = s or "some default value" Ok,

是否存在C#null的Python等价物

在C#中有一个空合并运算符(写为?? ),它允许在赋值过程中进行简单的(短)空检查: string s = null; var other = s ?? "some default value"; 有没有一个python等价物? 我知道我可以这样做: s = None other = s if s else "some default value" 但有没有更短的路(我不需要重复s )? other = s or "some default value" 好吧,必须澄清如何or操作员的工作。 它是一个布尔运算符,因此它在布尔上下文中工作。 如

How to import other Python files?

How do I import other files in Python? How exactly can I import a specific python file like import file.py ? How can I import a folder instead of a specific file? I want to load a Python file dynamically at runtime, based on user input. I want to know how to load just one specific part from the file. For example, in main.py I have: from extra import * Although this gives me all the d

如何导入其他Python文件?

我如何使用Python导入其他文件? 我怎样才能导入一个特定的Python文件,如import file.py ? 我如何导入文件夹而不是特定的文件? 我想根据用户输入在运行时动态加载Python文件。 我想知道如何从文件中加载一个特定的部分。 例如,在main.py我有: from extra import * 尽管这给了我extra.py所有定义,但当我想要的只是一个单一定义时: def gap(): print print 我为什么要添加到import语句才能从extra.p

Grouping by week, and padding out 'missing' weeks

In my Django model, I've got a very simple model which represents a single occurrence of an event (such as a server alert occurring): class EventOccurrence: event = models.ForeignKey(Event) time = models.DateTimeField() My end goal is to produce a table or graph that shows how many times an event occurred over the past n weeks. So my question has two parts: How can I group_by th

按周分组,并填补'缺失'周

在我的Django模型中,我有一个非常简单的模型,它表示一个事件(例如发生服务器警报)的单个事件: class EventOccurrence: event = models.ForeignKey(Event) time = models.DateTimeField() 我的最终目标是制作一张表格或图表,显示过去n周内事件发生的次数。 所以我的问题有两个部分: 我怎么能group_by time字段的一周? 我怎样才能“填补”这个group_by的结果,为任何缺失的星期添加一个零值? 例如,对于

Identifying subject/domain of a given word

My project is to extract keywords from a given text and tell to which domain that keyword belongs to. For example if the keyword is deadlock it should tell the keyword belongs to operating system. I have done till extracting the keywords part. But I am new to machine learning and I need to know "how to tell the domain/subject of that keyword.". Domains include os, networks, dbms...

识别给定单词的主题/域

我的项目是从给定的文本中提取关键字,并告诉关键字属于哪个域。 例如,如果关键字是死锁,它应该告诉关键字属于操作系统。 我已经完成,直到提取关键字部分。 但我是机器学习的新手,我需要知道“如何说出关键字的域/主题”。 域包括os,网络,dbms ...(计算机科学英语相关术语..)。

Tag, extract phrases from free text using a custom vocabulary (python)?

I have a custom vocabulary with approx. 1M rows in a SQL table. Each row has a UID and a corresponding phrase that can be many words in length. This table rarely changes. I need tag, extract, chunk or recognize (NER ?) entity phrases in a free-text document against the above mentioned custom vocabulary. So for a phrase found in the free text, I can pull its UID. It would be nice if partia

标记,使用自定义词汇表(Python)从自由文本中提取短语?

我有一个自定义词汇约。 SQL表中的1M行。 每行都有一个UID和一个对应的短语,长度可以是多个单词。 这张表很少改变。 我需要在自由文本文档中对上述自定义词汇表进行标记,提取,块或识别(NER?)实体短语。 所以对于在自由文本中找到的短语,我可以拉它的UID。 如果部分匹配以及以不同顺序出现的词组标记将根据某些阈值/算法设置进行标记/提取,那将会很好。 哪一种NLP工具,最好是基于Python的工具,可以在自由文本

Extract terminology from sentences quickly

I am working in Text Mining and my work is focused on biomedical entities (genes, proteins, drugs and diseases). I would like to share with you some questions. Now, my goal is to find biomedical entities in biomedical text (from Medline) and through of dictionaries of terms, I can identify each entity found with its unique identifier. To store text, dicitionaries and results, I am using Mong

快速从句子中提取术语

我正在从事文本挖掘工作,我的工作重点是生物医学实体(基因,蛋白质,药物和疾病)。 我想与你分享一些问题。 现在,我的目标是找到生物医学文本(来自Medline)以及词典词典中的生物医学实体,我可以通过其唯一标识符来识别找到的每个实体。 为了存储文本,dicitionaries和结果,我正在使用MongoDB(一个非SQL数据库)。 每个摘要被分割成句子,并且每个句子都存储在一个新记录中(带有令牌,块和词性标签列表)。 为了