Python subprocess in .exe

I'm creating a python script that will copy files and folder over the network. it's cross-platform so I make an .exe file using cx_freeze I used Popen method of the subprocess module if I run .py file it is running as expected but when i create .exe subprocess is not created in the system I've gone through all documentation of subprocess module but I didn't find any solutio

.exe中的Python子进程

我正在创建一个python脚本,它将通过网络复制文件和文件夹。 它是跨平台的,所以我使用cx_freeze创建一个.exe文件 我使用了子进程模块的Popen方法 如果我运行.py文件它正在按预期运行,但是当我创建.exe子进程没有在系统中创建 我已经通过了子进程模块的所有文档,但是我没有找到任何解决方案 一切(我使用的Tkinter也可以正常工作)在.exe接受子进程中工作。 任何想法如何在.exe.file中调用子进程? 该文件正在调

Python multithreading best practices

i just recently read an article about the GIL (Global Interpreter Lock) in python. Which seems to be some big issue when it comes to Python performance. So i was wondering myself what would be the best practice to archive more performance. Would it be threading or either multiprocessing? Because i hear everybody say something different, it would be nice to have one clear answer. Or at least

Python多线程最佳实践

我刚刚阅读了一篇关于Python中GIL(全局解释器锁)的文章。 当谈到Python性能时,这似乎是一个大问题。 所以我想知道自己最好的做法是存档更多的表现。 它是线程还是多处理? 因为我听到每个人都说一些不同的东西,所以最好有一个明确的答案。 或者至少要知道多线程对多处理的优缺点。 亲切的问候, 短剑 它取决于应用程序以及您正在使用的python实现。 在CPython(参考实现)和pypy中,GIL一次只允许一个线程执行P

Python threads don't run simultaneously

I'm brand new to multi-threaded processing, so please forgive me if I butcher terms or miss something obvious. The code below doesn't offer any time advantage over different code that calls the same two functions one after the other. import time import threading start_time = time.clock() def fibonacci(nth): #can be ignored first = 0 second = 1 for i in range(nth):

Python线程不会同时运行

我是多线程处理的全新,所以请原谅我,如果我屠杀条款或错过一些明显的东西。 下面的代码不会在不同的代码中依次调用相同的两个函数提供任何时间优势。 import time import threading start_time = time.clock() def fibonacci(nth): #can be ignored first = 0 second = 1 for i in range(nth): third = first + second first = second second = third print "Fibonacci number",

scan websites for content (fast)

I have thousands of websites in a database and I want to search all of the websites for a specific string. What is the fastest way to do it? I think I should get the content of each website first - this would be the way I do it: import urllib2, re string = "search string" source = urllib2.urlopen("http://website1.com").read() if re.search(word,source): print "My search string: "+string an

扫描网站的内容(快速)

我在数据库中有数千个网站,我想搜索特定字符串的所有网站。 什么是最快的方法呢? 我想我应该首先获得每个网站的内容 - 这将是我这样做的方式: import urllib2, re string = "search string" source = urllib2.urlopen("http://website1.com").read() if re.search(word,source): print "My search string: "+string 并搜索字符串。 但这非常缓慢。 我如何在python中加速它? 我不认为你的问题是该程序 - 这是事实

continuosly running function in background in python

I want to run a function continuoulsy in parallel to my main process.How do i do it in python?multiprocessing?threading or thread module? I am new to python.Any help much appreciated. If the aim is to capture stderr and do some action you can simply replace sys.stderr by a custom object: >>> import sys >>> class MyLogger(object): ... def __init__(self, callback): ...

在Python中的后台连续运行函数

我想与我的主进程并行运行函数continuoulsy。我该如何在python?multiprocessing?线程或线程模块中执行? 我是新来的python.Any帮助非常感谢。 如果目标是捕获stderr并执行一些操作,则可以简单地使用自定义对象替换sys.stderr : >>> import sys >>> class MyLogger(object): ... def __init__(self, callback): ... self._callback = callback ... def write(self, text): ...

Python real time image classification problems with Neural Networks

I'm attempting use caffe and python to do real-time image classification. I'm using OpenCV to stream from my webcam in one process, and in a separate process, using caffe to perform image classification on the frames pulled from the webcam. Then I'm passing the result of the classification back to the main thread to caption the webcam stream. The problem is that even though I have

Python实时图像分类问题与神经网络

我正在尝试使用caffe和python来进行实时图像分类。 我使用OpenCV从一个进程中的网络摄像头进行流式处理,并在一个单独的进程中使用caffe对从网络摄像头拉出的帧进行图像分类。 然后,我将分类结果返回给主线程,以标注摄像头流。 问题是,即使我有一个NVIDIA GPU,并且正在GPU上执行caffe预测,主线程也会被忽略。 通常不做任何预测,我的摄像头流以30 fps运行; 然而,根据预测,我的摄像头流最多只能达到15 fps。 我已

Pip build option to use multicore

I found that pip only use single core when it compiles packages. Since some python packages takes some time to build using pip, I'd like to utilize multicore on the machine. When using Makefile, I can do that like following command: make -j4 How can I achieve same thing for pip? From what I can tell it does not look like pip has this ability but I may be mistaken. To do multiprocessin

Pip构建选项以使用多核

我发现,编译包时,pip只使用单核。 由于一些python包需要一些时间来使用pip来构建,所以我想在机器上使用多核。 当使用Makefile时,我可以像下面的命令那样做: make -j4 我怎样才能达到同样的东西的点子? 从我可以告诉它看起来不像pip有这种能力,但我可能会误解。 要在python中执行多处理,你可以使用多处理包,[这里是我找到的指南](http://pymotw.com/2/multiprocessing/basics.html),如果你感兴趣的话,如何做

What are the differences between the threading and multiprocessing modules?

I am learning how to use the threading and the multiprocessing modules in Python to run certain operations in parallel and speed up my code. I am finding this hard (maybe because I don't have any theoretical background about it) to understand what the difference is between a threading.Thread() object and a multiprocessing.Process() one. Also, it is not entirely clear to me how to instanti

线程和多处理模块之间有什么区别?

我正在学习如何在Python中使用threading和multiprocessing模块来并行运行某些操作并加速我的代码。 我发现这很难(也许是因为我没有任何关于它的理论背景)来理解threading.Thread()对象和multiprocessing.Process()之间的区别。 此外,我不完全清楚如何实例化一个作业队列,并且只有4个(例如)它们并行运行,而另一个则等待资源在执行之前释放。 我在文档中找到了清楚的例子,但不是很详尽; 只要我尝试让事情变得复杂一

How can I explicitly free memory in Python?

I wrote a Python program that acts on a large input file to create a few million objects representing triangles. The algorithm is: read an input file process the file and create a list of triangles, represented by their vertices output the vertices in the OFF format: a list of vertices followed by a list of triangles. The triangles are represented by indices into the list of vertices Th

我如何在Python中显式释放内存?

我编写了一个Python程序,该程序作用于大型输入文件,以创建几百万个代表三角形的对象。 该算法是: 读取输入文件 处理文件并创建一个由其顶点表示的三角形列表 以OFF格式输出顶点:顶点列表,后跟一系列三角形。 三角形由顶点列表中的索引表示 在打印出三角形之前打印出完整的顶点列表的OFF的要求意味着在将输出写入文件之前,我必须在内存中保存三角形列表。 与此同时,由于列表的大小,我收到内存错误。 告诉Pyt

Simple asynchronous task with asyncio

This question already has an answer here: Can an asyncio event loop run in the background without suspending the Python interpreter? 1 answer How to use threading in Python? 18 answers Multiprocessing vs Threading Python 7 answers background function in Python 3 answers

使用asyncio进行简单的异步任务

这个问题在这里已经有了答案: 在不挂起Python解释器的情况下,asyncio事件循环可以在后台运行吗? 1个答案 如何在Python中使用线程? 18个答案 多处理与线程Python 7的答案 Python 3中的后台函数的答案