InboundMailHandler appears to only work once

I'm writing an app for Google App Engine (with Python and Django) that needs to receive email and add some elements of the received email messages to a datastore. I am a very novice programmer. The problem is that the script I specify to handle incoming email appears to only run once (until the script is touched). Sending a test email from the local admin console to, say, 'test@downl

InboundMailHandler似乎只能使用一次

我正在为Google App Engine(使用Python和Django)编写应用程序,该应用程序需要接收电子邮件并将收到的电子邮件的某些元素添加到数据存储区。 我是一个非常新手的程序员。 问题是我指定处理传入邮件的脚本似乎只运行一次(直到脚本被触摸)。 将测试电子邮件从本地管理控制台发送到“test@downloadtogo.appspotmail.com”会导致实体正确添加到本地数据存储区。 发送第二,第三等测试电子邮件不起作用 - 不添加实体。 

Is there any way to use aiohttp client with socks proxy?

Looks like aiohttp.ProxyConnector doesn't support socks proxy. Is there any workaround for this? I would be grateful for any advice. 你尝试过aiosocks吗? import asyncio import aiosocks from aiosocks.connector import SocksConnector conn = SocksConnector(proxy=aiosocks.Socks5Addr(PROXY_ADDRESS, PROXY_PORT), proxy_auth=None, remote_resolve=True) session = aiohttp.ClientSession(connector=conn

有什么办法可以用socks proxy来使用aiohttp客户端吗?

看起来像aiohttp.ProxyConnector不支持袜子代理。 有没有解决方法? 我会很感激任何建议。 你尝试过aiosocks吗? import asyncio import aiosocks from aiosocks.connector import SocksConnector conn = SocksConnector(proxy=aiosocks.Socks5Addr(PROXY_ADDRESS, PROXY_PORT), proxy_auth=None, remote_resolve=True) session = aiohttp.ClientSession(connector=conn) async with session.get('http://python.org') as res

Python, write json / dictionary objects to a file iteratively (one at a time)

I have a large for loop in which I create json objects and I would like to be able to stream write the object in each iteration to a file. I would like to be able to use the file later in a similar fashion later (read objects one at a time). My json objects contain newlines and I can't just dump each object as a line in a file. How can I achieve this? To make it more concrete, consider t

Python,将json / dictionary对象迭代地写入一个文件(一次一个)

我有一个很大的for loop ,我在其中创建json对象,我希望能够将每次迭代中的对象写入一个文件。 我希望稍后能够以类似的方式使用该文件(一次读取一个对象)。 我的json对象包含换行符,我不能将每个对象转储为文件中的一行。 我怎样才能做到这一点? 为了使其更具体,请考虑以下内容: for _id in collection: dict_obj = build_dict(_id) # build a dictionary object with open('file.json', 'a') as f:

Paranoia secure UUID generation

I need to generate many unique identifier on a distributed system. In paranoia mode, I wan't to be sure to : never have collision prevent the determination of the computer's location used to generate the identifier (Mac adresse and date time) I think generate UUID. If I use UUID1 (based on MAC address, timestamp, etc...) : I'm sure to never have collision It's possib

偏执狂安全的UUID生成

我需要在分布式系统上生成许多独特的标识符。 在偏执狂模式下,我不能确定: 永远不会碰撞 阻止确定用于生成标识符的计算机位置 (Mac地址和日期时间) 我认为生成UUID。 如果我使用UUID1(基于MAC地址,时间戳等): 我一定不会碰撞 可以找到位置 如果我使用UUID4(基于随机生成器): 有可能发生碰撞(碰撞的可能性确实非常小, 但存在! ) 我相信这是不可能的位置(日期和电脑) 你有解决方案来满足这

Difference between sphinxcontrib.napoleon and numpy.numpydoc

I am writing documentation for a Python project using Numpy-style docstrings. numpydoc and napoleon are two Sphinx extensions that parse Numpy-style docstrings to generate documentation. The first one is used for the Numpy project itself, the second is shipped with Sphinx. What are the pros and cons of using one extension over the other? The resulting format of each a bit different, and th

sphinxcontrib.napoleon和numpy.numpydoc之间的区别

我正在为使用Numpy样式文档的Python项目编写文档。 numpydoc和拿破仑是两个解析Numpy风格文档来生成文档的Sphinx扩展。 第一个用于Numpy项目本身,第二个用于狮身人面像。 使用一个扩展优于另一个扩展的优点和缺点是什么? 每种结果的格式都有点不同,并且napoleon的默认行为链接到python文档中的已知数据类型,并且稍微更加精简( numpydoc显示的有点像它在docstring中的显示方式)。 下面是每个例子,都使用默认的sphi

Run function exactly once for each row in a Pandas dataframe

If I have a function def do_irreversible_thing(a, b): print a, b And a dataframe, say df = pd.DataFrame([(0, 1), (2, 3), (4, 5)], columns=['a', 'b']) What's the best way to run the function exactly once for each row in a pandas dataframe. As pointed out in other questions, something like df.apply pandas will call the function twice for the first row. Even using numpy np.vectorize(d

为Pandas数据框中的每一行运行函数一次

如果我有一个功能 def do_irreversible_thing(a, b): print a, b 和一个数据帧,说 df = pd.DataFrame([(0, 1), (2, 3), (4, 5)], columns=['a', 'b']) 什么是对的大熊猫数据帧的每一行运行功能恰好一次的最佳途径。 正如其他问题所指出的,像df.apply pandas这样的东西会为第一行调用两次函数。 即使使用numpy np.vectorize(do_irreversible_thing)(df.a, df.b) 使函数在第一行被调用两次,就像df.T.apply()或df.ap

Cannot import QtWebKitWidgets in PyQt5

I've recently upgraded PyQt5 from 5.5.1 to 5.6.0 using the Windows 32-bit installer here: https://www.riverbankcomputing.com/software/pyqt/download5. I've also upgraded my python from 3.4 to 3.5. When I run my old code (which used to work) with the latest version I get an exception: from PyQt5.QtWebKitWidgets import * ImportError: No module named 'PyQt5.QtWebKitWidgets' All of my

无法在PyQt5中导入QtWebKitWidgets

我最近使用Windows 32位安装程序将PyQt5从5.5.1升级到5.6.0:https://www.riverbankcomputing.com/software/pyqt/download5。 我也把我的python从3.4升级到3.5。 当我用最新版本运行我的旧代码(曾经工作过)时,我得到一个异常: from PyQt5.QtWebKitWidgets import * ImportError: No module named 'PyQt5.QtWebKitWidgets' 我所有在我的python中的QT调用都是连续发生的,并且(并且我知道我不应该导入*,但这与我认

2^n Itertools combinations with advanced filtering

I know that I can use itertools to pump out combinations, and define the size of the combination group, like so: import itertools print list(itertools.combinations(['V','M','T','O','Q','K','D','R'], 4)) The output of this would be like a list of tuples, each of length 4 in this case. From here, what I'd like to do is enforce 2 parameters - 1)exclude any combinations/tuples that contain ce

具有高级过滤功能的2 ^ n Itertools组合

我知道我可以使用itertools来抽出组合,并定义组合组的大小,如下所示: import itertools print list(itertools.combinations(['V','M','T','O','Q','K','D','R'], 4)) 这样的输出就像元组列表,在这种情况下每个元组的长度都是4。 从这里,我想要做的是强制执行2个参数 - 1)排除包含某些对的任何组合/元组 - 例如V和M,或者Q和K. 2)强制每个元组只包含1个实例一封信。 我相信itertools已经在做#2。 剩下的只是那些

Disable warnings while pip installing packages

Can I somehow disable warning from PIP while it installs packages? I haven't found such an option in pip usage! I'm trying to install packages using python script (2.7.8) and check whether it was successful: p = subprocess.Popen( 'pip install requests', shell=True, executable='/bin/bash', stdout=subprocess.PIPE, stderr=subprocess.PIPE ) out, err = p.communicate() if

在pip安装软件包时禁用警告

我能以某种方式禁用PIP安装软件包时的警告吗? 我还没有找到这样一个选项用于点子使用! 我试图使用python脚本(2.7.8)来安装软件包并检查它是否成功: p = subprocess.Popen( 'pip install requests', shell=True, executable='/bin/bash', stdout=subprocess.PIPE, stderr=subprocess.PIPE ) out, err = p.communicate() if err: sys.stdout.write('Error occured while executing: %s' % err)

Linear Regression with positive coefficients in Python

I'm trying to find a way to fit a linear regression model with positive coefficients. The only way I found is sklearn's Lasso model, which has positive=true arguments, but doesn't recommend using with alpha=0 (means no other constraints on the weights). Do you know of another model/method/way to do it? Thanks IIUC, this is a problem which can be solved by the scipy.optimize.nn

Python中具有正系数的线性回归

我试图找到一种方法来拟合具有正系数的线性回归模型。 我发现的唯一方法是sklearn的Lasso模型,它具有positive = true的参数,但不建议在alpha = 0的情况下使用(意味着对权重没有其他限制)。 你知道另一种模型/方法吗? 谢谢 IIUC,这是一个可以通过scipy.optimize.nnls解决的scipy.optimize.nnls ,它可以做非负的最小二乘。 解决argmin_x || Ax - b || _2 for x> = 0。 在你的情况下,b是y,A是X,x是β(